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ABSTRACT

The development of nonlinear surface and internal wave
groups is investigated. Surface wave evolution was observed
in an unusually long wave channel as a function of steepness
and group length. Dissipation and frequency downshifting were
important characteristics of the long-time evolution. The
amplitude and phase modulations were obtained using the
Hilbert transform and specified as an initial condition to the
cubic nonlinear Schrodinger equation, which was solved
numerically. This equation is known to govern the slowly
varying complex modulation envelope of gravity waves on deep
water. When dissipation was included, the model compared
quite well with the observations. Phase modulation was used
to interpret the long-time behavior, using the phase evolution
of exact asymptotic solutions as a guide. The wave groups
exhibited a long-time coherence but not the recurrence
predicted by the inviscid theory.
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An oceanic field study of the generation cf groups of
large amplitude internal waves by stratified tidal flow over a
submarine ridge indicates that the large amplitude and
asymmetry of the topography are critical in determining the
type of flow response. The calculated Froude numbers,
response length scale and durstion differ markedly between the
two phases of the tide due to the asymmetry.
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DESCRIPTION OF FIGURES

‘ 2.1 Experimental facility. Outdoor flood plain, Bay
St. Louis, MI.

2.2 Orientation of wavemaker and wave channel within the
100 by 340 meter basin and the profile of the
hyperbolic forward face of the wavemaker.

2.3 Wave group development with fetch for a group of 10
waves of initial steepness ak = .03 (Exp 78).
Amplitude is in centimeters of surface displacement
(mean removed). Fetch increases upwards.

2.4 Wave group development with fetch for a group of 25
waves of initial steepness ak = .07 (Exp 77).

2.5 Wave group development with fetch for a group of 10
wvaves of initial steepness ak = .10 (Exp 86).

) 2.6 Wave group development with fetch for a group of 15
waves of initial steepness ak = .10 (Exp 871).

2.7 Wave group development with fetch for a group of 25
waves of initial steepness ak = .10 (Exp 88).

2.8 Wave group development with fetch for s group of 15
waves of initial steepness ak = .13 (Exp 62).

2.9 Wave group development with-totch for s group of 10
waves of initial steepness ak = .16 (Exp 21).

2.10 Wave group development with fetch for a group of 1%
waves of initial steepness ak = .16 (Exp 22).

2.11 Wave group development with fetch for a group of 23
waves of initial steepness ak = .16 (Exp 23)




2.18

Maximum entropy (MEM) spectral evolution with fetch for
a group of 10 waves of steepness ak = .03 (Exp 78).
Fetches as indicated. Group was bandpassed on the
interval (.3,1.31hz centered on the initial carrier
frequency 0.80 hz. Filter rolloff occurs at the
bandedges.

Maximum entropy (MEM) spectral evolution with fetch for
a group of 25 waves of steepness ak = .07 (Exp 77).
Fetches as indicated. Group was bandpassed on the
interval (.5,1.5)hz centered on the initial carrier
frequency 0.96 hz. Filter rolloff occurs at the
bandedges.

Maximum entropy (MEM) spectral evolution with fetch for
a group of 25 waves of steepness ak = .10 (Exp 88).
Fetches as indicated. Group was bandpassed on the
interval (.5,1.51hz centered on the initial carrier
frequency 0.96 hz. Filter rolloff occurs at the
bandedges.

Same as previous (2.14) except data is unfiltered and
spectrum is done on larger interval [(.1,3.0Jhz. Notice
the first harmonic peak, the loss in resolution of
sidebands (15.2 m) and the removal of spurious peaks at
the bandedges of the filter.

Maximum entropy (MEM) spectral evolution with fetch for
a group of 15 waves of steepness ak = .15 (Exp 62).
Fetches as indicated. Group was bandpassed on the
interval (.7,1.7]hz centered on the initial carrier
frequency 1.20 hz. Filter rolloff occurs at the
bandedges.

Maximum entropy (MEM) spectral evolution with fetch for
a group of 25 waves of steepness ak = .16 (Exp 23).
Fetches as indicated. Group was bandpassed on the
interval (.7.1.71hz centered on the initial carrier
frequency 1.20 hz. Filter rolloff occurs at the
bandedges.

Same as previous (2.17) except data is unfiltered and
spectrum is done on larger interval (.1,3.0lhz. Notice
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the first harmonic peak (6.1 m), the loss in resolution
of sidebands (30.5 m) and the removal of spurious peaks ]

at the bandedges of the filter.

Logarithm of packet energy
value plotted versus fetch
waves, ak = .03 (Exp 78).
data is also shown.

Logarithm of packet energy
value plotted versus fetch
waves, ak = .07 (Exp 77).
data is also shown.

Logarithm of packet energy
value plotted versus fetch
waves, ak = .10 (Exp 88).
data is also shown.

Logarithm of packet energy
value plotted versus fetch
waves, ak = .15 (Exp 62).
data is also shown.

Logarithm of packet energy
value plotted versus fetch
waves, ak = .16 (Exp 23).
data is also shown.

Amplitude, phase and frequency modulations at 6.1 m for
a group of 10 waves of initial steepness ak = .03 (Exp

78). Amplitude modulation

modulation is in radians and frequency modulation is in

radians/sec.

normalized by its initial
for a wave group of 10
Least squares line fit to

normalized by its initial
for a wave group of 25
Least squares line fit to

normalized by its initial
for a wave group of 25
Least squares line fit to

normalized by its initial
for a wave group of 15
Least squares line fit to

normalized by its initial
for a wave group of 25
Least squares line fit to

is in centimeters, phase

Amplitude, phase and frequency modulations at 30.5 m

for a group of 10 waves of initial steepness ak = .03

(Exp 78).

Amplitude, phase and frequency modulations at 61l.1 m

for a group of 10 waves of initial steepness ak = .03
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.28

.29

.30

.31

.32

.33

.34

.35

.36

(Exp 78).

Amplitude. phase and frequency modulations at 91.4 m
for a group of 10 waves of initial steepness ak = .03
(Exp 78).

Amplitude, phase and frequency modulations at 106.7 m
for a group of 10 waves of initial steepness ak = .03
(Exp 78).

Amplitude, phase and frequency modulations at 137.2 m
for a group of 10 waves of initial steepness ak = .03
(Exp 78).

Amplitude, phase and frequency modulations at 6.1 m for

a group of 15 waves of initial steepness ak = .10 (Exp
87).

Amplitude, phase and frequency modulations at 30.5 m
for a group of 15 waves of initial steepness ak .10
(Exp 87). '

Amplitude, phase and frequency modulations at 6l.1 m
for a group of 15 waves of initial steepness ak = .10
(Exp 87)

Amplitude, phase and frequency modulations at 91.4 m
for a group of 15 waves of initial steepness ak = .10
(Exp 87).

Amplitude, phase and frequency modulations at 106.7 m
for a group of 15 waves of initial steepness ak = .10
(Exp 87).

Amplitude, phase and frequency modulations at 137.2 m
for a group of 15 waves of initial steepness ak = .10
(Exp 87).

Amplitude, phase and frequency modulations at 6.1 m for

PG S SRy AP .
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a group of 25 waves of initial steepness ak = .16 (Exp
23).

2.37 Amplitude, phase and frequency modulations at 30.5 m
for & group of 2% waves of injtial steepness ak = .16
(Exp 23).

. 2.38 Amplitude, phase and frequency modulations at 6l.1 m
X for a group of 25 waves of initial steepness ak = .16

F (Exp 23).

X 2.39 Amplitude., phase and frequency modulations at 91.4 m
3 for a group of 25 waves of initial steepness ak = .16
(Exp 23).

2.40 Amplitude., phase and frequency modulations at 106.7 m
for a group of 25 waves of initial steepness ak = .]6

N (Exp 23).

2.41 Amplitude, phase and frequency modulations at 137.2 m
for a group of 25 waves of initial steepness ak = .16
(Exp 23).

2.A1 Block diagram of data processing sequence.

3.1 Numerical evolution of a steeper-than-soliton initial
profile (l/2-soliton). The magnitude of the complex
envelope is plotted in a spatial frame that propagates
at the linear group velocity, -12.5 < X < 12.5. The
length of the time evolution corresponds to T = 10,

3.2a Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the 1/2-soliton initial condition.

3.2b Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.2a.
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3.3a Superposition of amplitude modulation at 4 different 4
times, T = 0, 2, 6, 10, corresponding to the
l/2-soliton initial condition.

3.3b Superposition of phase modulation at 4 different times,
T =20, 2, 6, 10, corresponding to the amplitude
modulation superposition of fig. 3.3a.

3.4 Numerical evolution of a one-soliton initial profile.
The magnitude of the complex envelope is plotted in a
spatial frame that propagates at the linear group
velocity, ~-12.5 < X < 12.5. The length of the time
evolution corresponds to T = 10.

3.5a Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the l-soliton initial condition.

3.5b Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.5a. .

3.6a Superposition of amplitude modulation at 4 different
times, T = 0, 2, 6, 10, corresponding to the l-soliton
initial condition.

3.6b Superposition of phase modulation at 4 different times,
T=0, 2, 6, 10, corresponding to the amplitude
modulation superposition of fig. 3.6a.

3.7 Numerical evolution of a two-soliton initial profile.
The magnitude of the complex envelope is plotted in a
spatial frame that propagates at the linear group
velocity, -12.5 < X < 12.5. The length of the time
evolution corresponds to T = 30.

3.8a Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time {ncreases .
upwards) for the 2-soliton initial condition.
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3.8b

3.%9a

3.11a

3.11b

3.11c

3.114

ha A AcHa Niae e 2n Mgne Srom gAm 0l ayEgr- Sy Eesy 2

-12-

Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of -
£ig. 3.6a.

Superposition of amplitude modulation at 4 different
times, T = 0, 6.3, 12.6, 18.9, corresponding to the
2-soliton initial condition.

Sgporpositlon of phase modulation at 4 different times,
T=20, 6.3, 12.6, 18.9, corresponding to the amplitude
modulation superposition of £ig. 3.%a.

Numerical evolution of a soliton plus radiation
(3/2-soliton) initial profile. The magnitude of the
complex envelope is plotted in a spatial frame that
propagates at the linear group velocity, =-12.5 < X <
12.5. The length of the time evolution corresponds to
T = 30.

Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the 3/2-soliton initial condition.

Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.1lla.

Further evolution of the magnitude of the complex
envelope plotted at 7 successive time steps (time
increases upwards) for the 3/2-soliton initial
condition.

Further evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
£ig. 3.1lle.

....




_ % - CHE e S e 4

....................

" e T ET AT N ET eI B T I m—" T — r—-_—-—m

3.13a

3.13b

3.13c¢

3.134

3.14a

3.14b

-13-~

Numerical evolution of a bound state plus radiation
(3/2-soliton) initial profile. The magnitude of the
complex envelope is plotted in a spatial frame that
propagates at the linear group velocity, -12.5 < X <
12.5. The length of the time evolution corresponds to
T = 30.

Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the 5/2~goliton initial condition.

Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.13a.

Further evolution of the magnitude of the complex
envelope plotted at 7 successive time steps (time
increases upwards) for the 5/2-soliton initial
condition.

Further evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.13c.

Superposition of amplitude modulation at 4 different
times, T = 0, 6.3, 12.6, 18.9, corresponding to the
S/72-soliton initial condition.

Superposition of phase modulation at 4 different times,
T=20, 6.3, 12.6, 18.9, corresponding to the amplitude
modulation superposition of fig. 3.l4a.

Numerical evolution of divergent solitons from an
antisymmetric initial profile corresponding to figure S
of Satsuma and Yajima (1974]. The magnitude of the
complex envelope is plotted in a spatial frame that
propagates at the linear group velocity, -12.% < X <
12.3. The length of the time evolution corresponds to
T = 30.
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3.16a

3.16b

3.16¢

3.164

3.17a

3.17b

3.17¢

3.174

3.18

-14-

Evolution of the magnitude of the complex envelope
plotted at 7 successive time steps (time increases
upwards) for the divergent soliton initial condition.

Further evolution of the magnitude of the complex
envelope plotted at 7 successive time steps (time
increases upwards) for the divergent soliton initial
condition.

Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.16a.

Further evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time
steps corresponding to the amplitude modulation of
fig. 3.16b.

Superposition of smplitude modulation at 4 different
times, T = 0, 6.3, 12.6, 18.9, corresponding to the
divergent soliton initial condition.

Superposition of phase modulation at 4 different times,
T=0, 6.3, 12.6, 18.9, corresponding to the amplitude
modulation superposition of fig. 3.17a.

Superposition of amplitude modulation at 4 different
times, T = 22, 24, 26, 30, corresponding to the
divergent soliton initial condition.

Superposition of phase modulation at 4 different times,
T = 22, 24, 26, 30, corresponding to the amplitude
modulation superposition of fig. 3.1l7¢c.

Inviscid NLS numerical evolution for a wave group of 10
waves, initial steepness ak = .03 (Exp 78). Spatial
frame -9 < X < 9 and time interval 0 < T < 2.5,
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Viscous NLS numerical evolution for a wave group of 10
waves, initial steepness ak = .03 (Exp 78). Spatial
frame -9 < X < 9 and time interval 0 < T < 2.5.

Initial condition at 6.1 m for numerical evolutions in
figs. 3.18 and 3.19.

Amplitude modulations for the evolution of a group of
10 waves, initial steepness ak = .03 (Exp 78). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (¢!
viscous NLS solutions at times corresponding to the
fetches in a.

Phase modulations for the evolution of a group of 10
waves, initial steepness ak = .03 (Exp 78). (a)
observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

Inviscid NLS numerical evolution for a wave group of 25
waves, initial steepness ak = .07 (Exp 77). Spatial
frame -21 < X < 21 and time interval 0 < T < S.

Viscous NLS numerical evolution for a wave group of 25
waves, initial steepness ak = .07 (Exp 77). Spatial
frame -21 < X < 21 and time interval 0 < T < 5.

Initial condition at 6.1 m for numerical evolutions in
figs. 3.23 and 3.24.

Amplitude modulations for the evolution of a group of
25 waves, initial steepness ak = .07 (Exp 77). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (c)
viscous NLS solutions at times corresponding to the
fetches in a.
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Phase modulations for the evolution of a group of 25
waves, initial steepness ak = .07 (Exp 77). (a)
observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (¢) viscous

NLS solutions at times corresponding to the fetches in '
..

Inviscid NLS numerical evolution for a wave group of 15
waves, initial steepness ak = .10 (Exp 87). Spatial
frame -29.3 < X < 29.3 and time interval 0 < T < 10.

Viscous NLS numerical evolution for a wave group of 15
waves, initial steepness ak = .10 (Exp 87). Spatial
frame -29.3 < X < 29.3 and time interval 0 < T < 10.

Initial condition at 6.1 m for numerical evolutions in
figs. 3.28 and 3.29.

Amplitude modulations for the evolution of a group of

observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (c¢)
viscous NLS solutions at times corresponding to the
fetches in a.

Phase modulations for the evolution of a group of 1%
waves, initial steepness ak = .10 (Exp 87). (a)
observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

Inviscid NLS numerical evolution for a wave group of 23
waves, initial steepness ak = .10 (Exp 88). Spatial
frame -31.3 < X < 31.3 and time interval 0 < T < 10.

Viscous NLS numerical evolution for a wave group of 23
waves, initial steepness ak = .10 (Exp 688). Spatial
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frame -31.3 ¢ X < 31.3 and time interval 0 < T < 10.

Initial condition at 6.1 m for numerical evolutions in
figs. 3.33 and 3.34.

Amplitude modulations for the evolution of a group of
25 waves, initial steepness ak = .10 (Exp 88). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (c)
viscous NLS solutions at times corresponding to the
fetches in a.

Phase modulations for the evolution of a group of 25
waves, initial steepness ak = .10 (Exp 68). (a)
observations, principal value and norma’ized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

Inviscid NLS numerical evolution for a wave group of 1S
waves, injitial steepness ak = .15 (Exp 62). Spatial
frame -31.%5 < X < 31.5 and time interval 0 < T < 40.

Viscous NLS numerical evolution for a wave group of 15
waves, initial steepness ak = .13 (Exp 62). Spatial
frame -31.%5 ¢ X < 31.5 and time interval 0 < T < 40.

Initial condition at 6.1 m for numerical evolutions in
figs. 3.38 and 3.39.

Amplitude modulations for the evolution of a group of
15 waves, initial steepness ak = .13 (Exp 62). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (¢)
viscous NLS solutions at times corresponding to the
fetches in a.

Phase modulations for the evolution of a group of 1%
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waves, initial steepness ak = .15 (Exp 62). (a)
observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a. '

Inviscid NLS numerical evolution for a wave group of 15
waves, initial steepness ak = .16 (Exp 22). Spatial
frame -33.%5 < X < 33.5 and time interval 0 < T < 45,

Viscous NLS numerical evolution for a wave group of 15
waves, initial steepness ak = .16 (Exp 22). Spatial
frame -33.5 < X < 33.5 and time interval O < T < 45.

Initial condition at 6.1 m for numerical evolutions in
figs. 3.43 and 3.44.

Amplitude modulations for the evolution of a group of
15 waves., initial steepness ak = .16 (Exp 22). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (c)
viscous NLS solutions at times corresponding to the
fetches in a.

Phase modulations for the evolution of a group of 15
waves, initial steepness ak = .16 (Exp 22). (a)
observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (c) viscous
NLS solutions at times corresponding to the fetches in
a.

Inviscid NLS numerical evolution for a wave group of 295
waves, initial steepness ak = .16 (Exp 23). Spatial
frame -29.1 < X < 29.1 and time interval 0 < T < 40.

Viscous NLS numerical evolution for a wave group of 25
waves, initial steepness ak = .16 (Exp 23). Spatial
frame -29.1 < X < 29.1 and time interval 0 < T < 40.
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3.51

3.%2

4.2

4.3

Initial condition at 6.1 m for numerical evolutions in
figs. 3.48 and 3.49.

Amplitude modulations for the evolution of a group of
25 waves, initial steepness ak = .16 (Exp 23). (a)
observations, nondimensionalized at each fetch by the
initial condition scaling. (b) inviscid NLS solutions
at times corresponding to the fetches in a. (c)
viscous NLS solutions at times corresponding to the
fetches in a.

Phase modulations for the evolution of a group of 25
waves, initial steepness ak = .16 (Exp 23). (a)
observations, principal value and normalized by pi for
successive fetches. (b) inviscid NLS solutions at
times corresponding to the fetches in a. (¢) viscous
NLS solutions at times corresponding to the fetches in
a.

CD shows the steaming track for the acoustic transect,
and B is the location of the buoy from the present
field experiment. Sites of measurements made in
previous studies are also indicated. EF marks an XBT
survey by HBO (1979]. T denotes the location of
Halpern's (1971la,b] observations. The solid triangles
show the position of Orr's acoustic observations of the
packet [(HBO, 19791. (Map after HBO, 1979).

2A is a Raytheon acoustic image made while steaming at
approximately 9 knots eastward across the bank as the
ebb tide slackened. The flow is from left to right and
is close to zero. The image shows a large scale
near-surface low-scattering region coherent with the
depression of the thermocline seen in 2B. The numbers
at the top of the figures indicate stations where XBT
casts were made. Temperatures from expanded scale XBT
traces were hand read and contoured in 2B on the same
scale as the acoustic image of 2A.

Vertical profile of Brunt-Vaisala frequency and the
first three vertical eigenmodes. The Brunt-Vaisala
frequency was calculated from density inferred from an
average of 6 hand-lovered CTD casts made in the
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vicinity of the mooring. The surface mixed layer
resulted from the passage of a storm. The eigenmodes
were also calculated from inferred density using a
fourth order Runge-Kutta shooting method. The
corresponding first three modal phase speeds were 23
cm/sec, 10.4 cm/sec and 7.1 cm/sec respectively.

Schematic of the movement of two clear (low-scattering)
regions in the acoustic images. The near-surface
region is identified in the text as a lee wave. The
bottom clear region may be associated with a pattern of
flow separation. 4A-4D show the set-up and
stationarity of the ebb tide lee wave. The patch of
clear bottom water is seen to move from the sill crest
to the east of the bank. 4E-4F show the lee wave
shortening and steepening’ the bottom water begins to
move back up the bank. 4G-4H show the set-up of 1-2
lee waves by the flood tide and the propagation of 4-S
of these lee waves as the tide turns. The bottom water
has moved back up and over the sill crest. The arrovs
indicate the direction of the flow. The time in hours
and the mean flow are marked in each schematic. These
values correspond to the Froude number time series
listed in Table 1.

Magnitude of the mean cross-component of current. Also
plotted is the first mode internal wave phase speed (23
cm/sec). When the current speed exceeds the lowest
mode phase speed, the flow is supercritical with
respect to the three lowest modes. This figure brings
together the Froude number calculation of Table 1 and
the schematic of Figure 4.4. The times of the
individual elements of the schematic are indicated,
thus showing their timing relative to the tidal cycle
and the flow criticality.

Raytheon acoustic image corresponding to Figure 4.4A.
Raytheon acoustic image corresponding to Figure 4.4E.
Raytheon acoustic image corresponding to Figure 4.4G.

Raytheon acoustic image corresponding to Figure 4.4H.
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.10 Raytheon acoustic image of high frequency internal vave ]
packet observed while ship was freely drifting 5 km ]
west of Stellwagen at point C.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Both field and laboratory observations of surface and
internal waves suggest that linear theory can not account for
all of the observed features in the data. For ciample. the
large amplitudes that are observed violate the small steepness
assumption required for linearization, and the inferred phase
speeds are higher than linear theory predicts.
Mollo-Christensen and Ramamonjiarisca {1978) review some
studies of surface wind waves (mostly laboratory but some
field observations) and find that linear dispersion does not
adequately describe wind wave propagation. They find that
wind waves propagate at higher phase velocities than the
dispersion relation predicts and that for frequencies
exceeding the frequency of the spectral maximum, the phase
ipood is nearly constant. Laboratory (Maxworthy 19791 and

field {(Osborne asnd Burch 1980] observations of internal waves
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also point towards the existence of large amplitude internal
waves whose propagation is not described by linear dispersion.
Although in recent years much theoretical work has been done
on the stability and interactions of nonlinear waves (Benjamin
and Feir 1967 Whitham 1974 Longuet-Higgins 19781,
observational and experimental studies have lagged behind. In
particular, an application of these theoretical results in

interpreting observations and in the modelling of oceanic

Although linear theory can not account for all of the
observed wave properties, admittedly it has worked fairly
well. In addition, it has the distinct advantage that
solutions superpose so that one can hope to describe a random
fiel: Jf waves using a Fourier decomposition: interpreting
the field as independently propagating Fourier components.
There is no general way to describe a random field of
nonlinear waves, although Mollo-Christensen and
Ramamonjiarisoa have attempted to 4o sO using wave groups
(19781. Their model was motivated by evidence they saw which
suggested that the surface wave field does not exist solely of
independently propagating Fourier components but at least
partislly of wave groups of permanent type. The existence of
internal waves of permanent type has also been documented in
the laboratory (Davis and Acrivos 1967), and evidence of their

occurrence in groups has been obtained in the field (Halpern




1971y Lee and Beardsley 1974 Gargett 1976].

This thesis Qeroucos the evolution of nonlinear surface A
and internal wave groups. It is an attempt to apply some of b
the wealth of existing theory on nonlinear waves to
observations, and also to model some of these observations
numerically. The surface wave observations were made in a "

laboratory wave channel and modelled numerically using the

Sl

cubic-nonlinear Schrodinger equation. The internal wave

observations were made during an oceanic field experiment, and

RS D RN

the results are interpreted in the context of an internal 4

Korteweg-deVries model. 3

There are several reasons to examine wave groups. At R
least for sea surface waves, evidence points towards a sea {
surface composed not just of independently propagating Fourier j

components but also of bound higher harmonics. Although

difficult to model, one can argue heuristically that a more
realistic point of view is one that looks at the sea surface
as a collection of groups of nonlinear waves exhibiting
coherence over certain space and time scales. The nonlinear
interactions of individual waves may create groups whose
identities are maintained through a balance of nonlinearity
and dispersion for some distance and time. These wave groups
of quasi-permanent form may then eventually disintegrate due

to instabilities or possibly the effects of external forcing
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and dissipation. This heuristic argument motivates the need
for a further understanding of wave groups. A second
motivation to examine groups is that interactions are easier
to observe in a group than in a continuous wavetrain. The
group is a well-defined entity in both space and time' hence,
interactions are isolated. Finally, both of the nonlinear
models which I apply to the observations of surface and
internal waves belong to a class of partial differential

equations which can be solved exactly for arbitrary pulse-like

‘initial conditions using the inverse scattering transform. A

wave group is a pulse-like initial condition, and although I

. will not use inverse scattering per se, properties predicted

by the exact solutions of the above two models based on
inverse scattering theory will be used in describing and

interpreting the results.

Separate treatment will be given to the topics of surface
and internal wave group development. Apart from a related
theme, the studies done for each are actually quite different
both in the measurements that were made and the subsequent

analysis,

1.2 SURFACE WAVES

Surface water waves are among the most widespread and

g
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. easily observable instances of wave motion in nature. They
have been studied for well over one hundred years in a number
of different disciplines (for an overall review see Barnett
and Kenyon 1975 for a review of recent advances in nonlinear
waves see Yuen and Lake 1960). Although the earliest periodic

solution for finite amplitude deep vater waves was derived by

Stokes in 1847, it was not until 1925 that Levi-Civita proved
the convergence of Stokes series solution. 0Oddly enough, the
a stability of the Stokes deep vater vavetrain was not
questioned for more than one hundred years after its
discovery. Lighthill [1965]), using Whitham's theory, showed
that the Stokes wavetrain is modulationally unstable.

H Benjamin and Feir (19671 theoretically confirmed the
modulational instability of weakly nonlinear wavetrains and

o ‘ made experiments which gave good agreement with the

PR TP

E N theoretical prediction for small wave steepness. These

instability analyses were for sideband perturbations to the

Seemact 4w

initial wavetrain. Longuet-Higgins (1978) did a numerical

1
D i

study of the stability of a finite amplitude deep water Stokes

o e

. wavetrain to linear normal mode perturbations as a function of

Ll £ L SRS S0 40 Dadk §

steepness. These perturbations were of both shorter and

longer wavelengths than the fundamental (super and sub

(NS W RN

harmonics). He also confirmed the modulational instability

for weakly nonlinear wavetrains as well as discovering that

T TRV IT IR Ty

the wavetrain actually restabilizes at some higher steepness

ak = .,346 ( ak = amplitude x wavenumber ). At still higher
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values of steepness ( ak = .41 ) a new type of subharmonic
instability appears’ it has a much higher growth rate than

the modulational instability.

Coincident with work on stability was the discovery that
the complex modulation envelope of periodic gravity waves on
deep vater evolves according to the cubic nonlinear
Schrodinger (NLS) equation. The earliest theoretical work
appears to be due to Zakharov (1968) who used a multiple
scales technique to derive the two dimensional cubic NLS
equation. The Schrodinger equation has been in use for quite
some time, in particular in the field of nonlinear optics.

But unlike the Korteweg-deVries (KAV) equation, which has long
been known to describe shallow water waves, it is only in the

past two decades that this equation has been associated with

deep vater wvaves.

= The cubic NLS and the KAV equations belong to a class of

F: nonlinear partial differential equations which have soliton
;? solutions. They can be solved exactly for arbitrary initial
;‘ conditions which decay sufficiently rapidly (pulse-like

Ff initial conditions) using the inverse scattering transform

éa derived by Gardner et al (1967). Thus, although historically
:g surface wvaves have been examined from the point of view of

wavetrains, this technique focused attention on wave groups.

I.E., the pulse-like envelope of some fundamental carrier wave
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gives rise to envelope solitons. Zakharov and Shabat (1972}

solved the one dimensional cubic nonlinear Schrodinger

equation exactly using the inverse scattering transform. The

exact solution predicted some interesting wave properties.

First, they found that an arbitrary initial condition

will disintegrate into a nuaber of solitons and an oscillatory
2 tail. The velocities and amplitudes of the solitons are

proportional to the resal and imaginary parts, respectively, of

the eigenvalues of the related scattering problem. The tail

is relatively small and unimportant. The number and structure

of both the solitons and the tail are determined by the

initisl condition. These envelope solitons are stable. They
survive pairwise collisions with no permanent change except

for a possible shift in phase and position. The amplitudes

el ¢ feaaty

and velocities remain unaltered. Unlike the soliton solutions

of the KAV equation, the velocity and amplitude of these

L Jun 2an s see
e re

solitons are independent of each other. What is principally

R o

E new compared to K4V solitons is the possibility of the

? formation of a "bound” state of a finite number of solitons

E having identical velocities. The solitons remain superposed
E and continue to interact: the modulation is characterized by
: a discrete number of frequencies. Energy is transferred

Q ) through a discrete number of modes. The simplest case of two

solitons is a periodic-in-time solution characterized by a

- single frequency. In the case of the N-goliton bound state,
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it is an arbitrarily periodic solution characterized by
N(N-11/2 frequencies. If this bound state is physically
realizable, it suggests & mechanism whereby a modulated group
of surface waves could exhibit relatively long time and space

coherence.

Yuen and Lake (1973) showed the equivalence of the
Schrodinger equation and higher order theory of Whitham.
Their experiments verified the existence of deep water
envelope solitons and gave good comparison with numerical
solutions of the Schrodinger equation. They also made
laborastory and numerical comparisons for the evolution of a
vavetrain (Lake et al 1977). Although a weakly nonlinear
wavetrain is modulationally unstable to a band of wavenumbers,
the existence of a high wavenumber cutoff (in one dimension)
suggests that the energy of the wavetrain may be confined to a
discrete number of modes and hence that in long-time
evolution, thermalization of wave energy (in the sense of
equipartition among all modes) will not occur. This was borne
out by numerical computations and confirmed by laboratory
experiments. Namely, in the sbsence of viscous dissipation,
the wavetrain goes through a series of modulation/demodulation
cycles characteristic of nonlinesar systems and known as the
Fermi-Pasta-Ulam (FPU) recurrence phenomenon. Basically, the
energy does not thermalize but excites a discrete number of

modes, with the possibility of exact recurrence of the initial
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condition. It should be emphasized that FPU recurrence in a
Stokes wavetrain is equivalent to the N-soliton bound state
for a nonlinear wavepacket. Only in the bound state can FPU
recurrence take place in a wave group because only then do the
solitons remain superposed and continue to interact. The
bound state together with the gquantum properties of the
solution, namely that there exists a discrete number of modes
possible, results in recurrence. The significance of
recurrence is that it indicates a long-time “memory"” of the
initial condition. Considering the intractability of the
general nonlinear problem, it is perhaps encouraging that so
such can be known from the initial condition. Also
encouraging for the concept of a wavetrain is the implication
that a wavetrain may not be just an artificial idealized
entity that can not be sustained naturally. It implies that a
vavetrain maintains its coherence during evolution, similarly
for groups. However, FPU recurrence has not been
experimentally verified for long-time evolution because of
restrictions in wave tank length. It is predicted from an
inviscid theory, and over long time one expects dissipation to
be important. Thus experiments are needed to establish

vhether recurrence is physically realizable.

Although the practical significance to oceanic waves is

questionable due to the one space dimension restriction, the

one space dimension results may extend to two dimensions more
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than was previously thought. Initial attempts to extend the
analysis to two dimensions involved the two space dimension
cubic NLS equation. This equation has solutions of permanent
type (Hui and Hamilton 1979]1. Although FPU recurrence still
occurs for a variety of initial conditions, there is no longer

a high wavenumber cutoff, and there is a gradual leak of

energy to higher modes (thermalization) (Yuen and Ferguson

1978). However, s second equation, the Zakharov integral
equation (Zakharov 1968] which recovers the NLS equation in
the appropriate limits, gives promising results and exhibits a

high wavenumber cutoff.

One of the questions that this thesis addresses is the
long-time evolution of nonlinear deep water surface gravity
wavepackets. First, it is an attempt to describe this
evolution from experiments that were made in an unusually long
wave tank (137.2 m). These observations can be used to answer
several questions. How do the wave groups evolve? Is the
bound state (FPU recurrence, long-time coherence) physically
realizable in the laboratory? On what time scale does
dissipation act? Does dissipation effectively rule out
recurrence? Is the Schrodinger equation an appropriate model
for the long-time evolution (since it is only weakly
nonlinear)? Can a satisfactory Schrodinger equation model
including dissipation be derived and results compared with

actual observations?
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A theoretical and numerical study by Satsuma and Yajima
(1974] indicated that for a variety of cases the bound state
could be predicted from the phase of the initial condition.
Historically the phase of the waves has not been considered
very important. In linear wave theory. the phase information
obtained from Fourier analysis is ignored. Yuen and Lake's
(19751 wave group experiments only examined the amplitude
modulation obtained by rectifying and low-pass filtering. In
part there has been a lack of motivation to examine phase
since physically its significance is unclear and since there
did not exist any method in fluid mechanics for demodulating
both amplitude and phase. Feir [(1967), in one of the earliest
experimental studies done on wave groups, used measured time
between crests to determine the frequency modulation. The
disadvantage of this method is its lack of resolution’ (it
yields frequency averaged over half a carrier period. This
thesis uses & method introduced by Melville (19811 from
communications theory and used by him to examine the amplitude
and phase modulations of breaking waves. With relatively weak
restrictions, he shows that the measurement of surface
displacement can be used to obtain a time series of both
amplitude and phase modulation at a point. From the phase
modulation the frequency modulation can be calculated and
using a second neighboring space measurement the wavonuﬁbor

modulation can be determined.
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There are several aspects of the wave phase that we are
interested in looking at. First we can describe the phase and
frequency modulations with increasing fetch and compare them
to numerical solutions of the NLS equation which evolve from
the same data. Previous comparisons have only been done for
the amplitude modulation. Secondly we can test the result of
Satsuma and Yajima (1974) that indicates that the occurrence
of the bound state can be predicted (in some cases! from the

3

phase of the initial condition.

The dispersion relation is a relation that involves the

phase of the waves (a relation between wavenumber, frequency

transform to confirm the nonlinear dispersion relation to
order O((ak)a) for modulated waves. A final question
involving phase and related to dispersion which this thesis
will address in part is the observed frequency downshift.
This is the phenomenon of a nearly uniform wavetrain of

carrier frequency £0 modulating and demodulating, eventually

reforming into a nearly uniform wavetrain with slightly lower
carrier frequency fl. Originally., this was observed in ocean ,
wind wave spectra (Kinsman 1965] and in laboratory wind waves
(Mollo-Christensen and Ramamonjiarisoa 19682). However, it has

also been well documented in laboratory waves in the absence

‘of wind (Ramamonjiarisoa (personal communication): Lake et al

19771. It can not be predicted from a model such as the NLS
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equation which is narrow-banded (valid for slow modulations
about a constant carrier frequency and wavenumber), unless
some new effect such as dissipation., higher order
nonlinearity, or forcing is included. Viscous damping or some
other physical process which causes a secular change in the
phase (and hence the dispersion relation) could account for
the observed downshift. Normally, studies have focused on the
damping of amplitude only. This thesis will explore to some

extent the effect that dissipation may have on phase.

1.3 INTERNAL WAVES

Internal waves of permanent form, although more difficult
to observe and measure than surface waves, have also been
examined theoretically and experimentally in both the
laboratory and the field [(Benjamin 1966: Davis and Acrivos
1967: Osborne and Burch 1980J. In the field they have mostly
been observed propagating in groups in near-shore regions. 1In
these regions strong coastal currents, enhanced density
gradients from river outflow and from greater influence of
seasonal heating, as well as large amplitude topography
(relative to water depth) all combine to produce a large

amplitude response to forcing.
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pern (1971al observed groups of large amplitude

. waves propagating in Massachusetts Bay that seemed to
‘rom tidal interaction with a submarine sill. The

.ion of these waves was looked at more recently by
iriscoe and Orr (1979). Halpern's field observations
)4 & theoretical (Lee and Beardsley 1974) and a

)y (Maxworthy 1979) study which offered two different
.ions of the generation mechanism of these waves.

\ there have been several sets of field observations of
)agation of groups of large amplitude internal waves,

i not much documentation of their generation. Despite
} theoretical and laboratory studies on this toﬁic.
ipplication of the results to actual oceanic situations
:ionable since the studies generally employ a simple

ilcation and an idealized topography.

>ther observation of the propagation of similar waves
of Gargett (19761 who observed large amplitude

| wavepackets in the southern Strait of Georgia,
Columbia. These packets are genarated by tidal flow

) submarine ridges which lie across the mouths of the
land passes of the southern strait. Apel et al (1975]
i10 made observations of tidally generated internal

iets over the continental shelf. The most dramatic
.ions are undoubtedly those of Osborne and Burch (1980]

) Andaman Sea. The observed amplitudes are as large as

e e S S iteabmtiniin. fmim
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60 meters, with phase speeds of order 200 cm/sec. Farmer and
Smith (1980a,b] have made the most extensive series of
measurements over a two year period in Knight Inlet, British
Columbia. They have actually observed the wave generation.
They see the formation of nonlinear lee wavoﬁrains resulting
from tidal flow over a sill. Although the physical situation
is quite di‘Terent from that in Massachusetts Bay, they have
offered yet another interpretation of Halpern's field

observations in light of their own measurements.

Thus although propagation of these types of waves has
been well documented in numerous studies, several of which are
cited above, there exist few actual observations of
generation. The large amplitude and asymmetry of the
topography are a determining feature of the fluid response,
and there are few theoretical or laboratory studies which
examine these effects. Knowledge of these waves, particularly
in coastal regions, is important for a number of reasons.
Among them are the design of offshore structures which can be
affected by the large amplitudes and phase velocities of the
wvaves. When wave breaking occurs, significant mixing can take
place which affects nutrient distribution and hence primary
production and marine animal feeding habits. These waves also
introduce a sampling problem for other oceanic measurements.
Mascarenhas (1979) computes from Halpern's data that the

apparent depth of the upper mixed layer can vary by as much as
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30% during a tidal cycle. Haury. Briscoe and Orr (1979] found
strong inhopmogeneities in the vertical and horizontal plankton

distribution caused by wave passsje.

This thesis addresses the question of the generation of
large amplitude internal gravity wavepackets. This was done
through a field experiment in Massachusetts Bay designed to
observe the interaction over time of the tide with Stellwagen

Bank, a local topographic feature. The goal of this study was

to determine the mechanism and timing of the generation of the
wavepackets previously observed by Halpern (1971la,b) and by
Haury., Briscoe and Orr (1979]. Since internal waves are more
difficult to observe than surface waves, a key tool 4in this
study was a commercially available Raytheon ship fathometer
which was used as a remote sensor of isopycnal motion. This
‘remote sensing technique to observe internal wave motion has
been used previously, by Farmer and Smith (1980a,b) and by

Haury, Briscoe and Orr (1979] among others.

M
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CHAPTER 2

LABORATORY OBSERVATIONS OF SURFACE WAVE GROUP DEVELOPMENT

2.1 INTRODUCTION

In March 1981 experiments were made to investigate the
long-time evolution of nonlinear deep water surface gravity
wave groups. This long-time observation was made possible by

the unusual length of the test facility (137.2 m). The

experiments were made in a wave channel constructed in the
outdoor flood plain in Bay St. Louis. MI (Figs. 2.1, 2.2).

They were carried out in cooperation with Dr. Ming Su of

l NORDA.

@ There have been relatively few experimental studies of

g wave group development. The most notable exceptions are the

? pulse experiments of Feir (1967), the wave group experiments

; of Yuen and Lake (1975] and the wind wave group experiments of
: Mollo-Christensen and Ramamonjiarisoca (1982]1. There are

several reasons to look at the development of groups. Since

most previous studies have been done for continuous




-40~

wavetrains, it is interesting to see if wave groups exhibit
the same characteristic evolution as continuous wavetrains.
Secondly, results for wave groups are probably more relevant -

to oceanic waves. Also, interactions are isclated and easier

to observe in wave groups.

The experiments were v;ry simple in nature: constant
amplitude, single frequency wave groups ware generated using a
plunger-type wavemaker. This simplicity was motivated in part
- by previous laboratory experiments (Mollo-Christensen and
Ramamonjiarisoa 1982) in which mechanically generated groups
were injected into an ambient wind wave field. The frequency

of the mechanically generated groups was chosen to correspond

to the spectral peak of the wind waves. Initially the

distinct groups could be followed, but the evolution quickly
became quite confused and complicated. This study addresses
the dynamics'ot the isolated, mechanically generated wave
groups. The observations were made outdoors under windless
conditions. Two parameters, the wave steepness ak (ak =
amplitude x wavenumber! and the group length (number of waves)

were varied. The steepness ranged from weak (ak = .03) to

mcdﬁrato (ak = .,16) nonlinearity. Three group lengths were

used: 10, 15 and 25 waves, nominally.

Some qualitative aspects of the wave group evoluticn as a

function of wave steepness and group length are described.

...........
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The initial group is seen to modulate with fetch. This

modulation gives thg impression of a splitting into several
groups. However, these ‘split’' groups do not diverge from
each other even over very long fetch. The entire modulated F

wave packet lengthens and decreases in amplitude.

Qualitatively, increasing the steepness increases the number
of groups in the split-up process. Increasing the group

length delays the splitting process.

In comparison with continuous wavetrains, the frequency
downshift observed in wavetrains (Lake et al, 1977) seems to
occur also for groups. A weakly nonlinear wavetrain is
modulationally unstable to sideband perturbations. The
wavetrain is observed to modulate with fetch, then demodulate
and reform into a nearly uniform wavetrain but at slightly
lower frequency. For groups of sufficient steepness. wave
packets also exhibit this phenomenon of frequency downshift,
This downshift was examined using maximum entropy spectra.
This type of spectra assumes an autoregressive model that

gives high resolution for short time series.

A packet's energy is defined as the integral of the
amplitude squared over the entire packet. The final
observation of packet energy is seen to be typically 25% of

its initial value. This indicates the importance of

‘dissipation in the long-time evolution.
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The concomitant amplitude. phase and frequency
modulations are obtained using the Hilbert transform. The
method and its assumptions are documented in Appendix 2.A.

The amplitude modulation or group envelope evolution
corresponds basically to the development seen visually. Phase
and frequency modulations are also describeds these are more
difficult to interpret. Previously, most emphasis has been
upon amplitude modulation, although Feir 4id try to obtain
frequency modulation. However, his method had poor

resolution.

A detailed description of the measurements is given in
the next section. This is followed by an analysis of the data

and a discussion of the results.

2.2 HMEASUREMENTS

The measurements were made in the outdoor flood plain in
Bay St. Louis, MI. Figure 2.1 shows an overall view of the
facility. It is L-shapﬁd with a mown grass bottom. The
dimensions are 1500 meters by 100 meters by 1 meter. A
movable constriction is situated 340 meters downstream of the
head box. It consists of 30 separate connecting gates, 3.33

meters long, which can be used to produce various flow
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configurations. For the present experiments, the constriction

vwas completely closed to create a constant depth basin 100
meters by 340 meters. Within this basin a plywood wave
channel was constructed which was 3.66 meters wide and 137.2
meters long.‘ Figure 2.2 shows the location and orientation of
the wave channel inside the basin. The basin was filled to a
depth of .72 meters. The wavemaker was situated at the head
of the channel! netting was stretched across the end to keep
larger particulates from contaminating the water surface
within the channel. There was no special treatment of the

water surface, however.

The wavemaker used is a plunger-type with a hyperbolic
forward face (Fig. 2.2). The maximum stroke setting is 30.5
cm and the maximum frequency range is 0.5 hz to 2.0 hz. For
these experiments the stroke setting ranged from $.1 to 7.6
cm, and the frequency ranged from .80 hz to 1.20 hz. The
crest length of the wavemaker matches the channel width, 3.66
meters. The period of the wavemaker is measured at the drive

shaft.

The wave height sensors were of capacitance type. They
consisted of a single, double-coated, magnetic wire .5 mm in
diameter. The change in capacitance caused by variation in
water depth due to wave passage is converted to a DC voltage

proportional to the surface displacement. The response is
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quite linear. Further details on the facility. wavemaker,
vave height sensors and data acquisition system can be found
in Su (1980]. He found from calibrations made at the start
and end of each day that very little drift occurs over an 8
hour period. In the present set of experiments, the sensors
were calibrated only at tho_start of each day. Wave
reflection in the basin did not appear to be much of a
problem. There is still 150 meters extent between the end of
the wave channel and the end of the basin, and as will be

seen, significant dissipation occurs over the channel length.

The data acquisition system records up to 20 wavegauge
signals, 20 current meter outputs, 3 components of wind
velocity, the period of the wavemaker, and 2 miscellaneous
inputs. HWavegauge records are filtered with a 3 db rolloff at
40 hz and digitized with 12-bit accuracy at 40 samples/sec.
They are formatted and stored on 9-track magnetic tape. Four
channels of 12-bit digital to analog conversion are available
as input to a chart recorder, oscilloscope, oscillograph or

analog spectrum analyzer.

The data acquisition system and other electronic analysis
equipment is housed in a trailer. R power supply of 440 volts

for the wavemaker and 110 volts for other instruments {s

provided by a portable diesel power generator located adjacent

to the trailer. A 2] meter high observation tower on the left
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side of the wave channel provides a plan view of the tank and

a platform for pictures or movies (Fig. 2.2).

For these experiments the measurements from 168 wave
height sensors, the wind velocity, and the wavemaker period

were recorded. The experiments were made under still wind

conditions. For a given stroke and frequency setting (hence
wave steepness), groups of 10, 15 and 25 waves were generated.
Each wave group was allowed to propagate down the channel
before generating the next group. The wavegauges were placed
along the centerline of the channel, and measurements were
made at the following fetches (distance is in meters): 6.1,
1.2, 30.5, 43.7, 61.1, 76.2, 91.4, 106.7, 121.9, 137.2. Most
locations had wavegauge pairs separated by .30 m (roughly one
quarter wavelength). The locations of the wavegauge pairs
vere: 6.1, 30.5, 61.1, 91.4, 106.7, 121.9, and 137.2 meters.
In addition, a third wavegauge at 121.9 m was placed near the
sidewall. Tho-pairs were used to determine the wavenumber.
Access to the sensors was provided by planks which ran from
the bank of the basin over the top of the channel walls.
Although it was attempted to generate wave groups of a single

frequency and constant amplitude, small transients were

present from starting and stopping the wavemaker.
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2.3 ANALYSIS AND RESULTS

2.3.1 Description of evolution

The wave group_ovolution was observed as a function of
two parameters: wave steepness and group length. Table 2.1
summarizes the experimental parameters for those experiments
chosen for discussion. They represent a range of steepness
from weak to moderate nonlinearity. For each steepness, three
different group lengths were used. The number of waves per

group represents a nominal estimate.

The initial frequency, £f0. was determined by three

different methods which gave very good agreement. The initial

frequency was determined first from a measurement at the drive
shaft of the wave generator. Secondly, it was calculated from
the wave period using the measured time lag between successive
bf wave peaks and troughs at the most upstream wavegauge (6.1 m).
Finally, the frequency was also determined as the frequency of
the spectral peak for the maximum entropy spectrum of the most
;‘ upstream wavegauge. The criterion for a wave peak or trough
vas defined as 40% of the maximum wave amplitude. The average
amplitude was calculated from the calibrated wave height

! measurement as one half the average wave height. The average
vave height, in turn, was calculated as the average difference

between the peak and trough smplitudes. The number of waves
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Table 2.1

Experimental Parameters

Experiment N ak 4 k £ ac/¢
w 0 1 0
(hz) (rad/cm!} (hz)

78 10 .03 0.80 0.02% 0.80 .00

é! 79 1% .03 0.80 0.025 0.80 .00
80 25 .03 0.80 0.025 0.80 .00

75 10 .07 0.97 0.036 0.97 .00

76 15 .07 0.96 0.036 0.96 .00

77 25 .07 0.96 0.036 0.96 .00

86 10 .10 0.96 0.037 0.95% .01

87 15 .10 0.96 0.037? 0.95 .0l

88 25 .10 0.96 0.037 0.94 .02

5 61 10 .15 1.20 0.06 1.06 .12
- 62 15 .15 1.20 0.06  1.04 .13
g 63 25 .15 1.21 0.06 1.04 .14

r .
- 21 10 .16 1.21 0.0% 1.0% .13
Ei A2 15 .16 1.21  0.0% 1.02 .17
1

23 25 .16 1.21 0.08 1.0 .16

!

LA At S SNl sade




il Dadui B AU SN R T NN rremr—"—_— -y

-50-

‘oup that met the peak/trough criterjion is tabulated
2.2. HWavenumber was calculated from the measured

] between the most upstream wavegauge pair (6.1 m)

‘e separated by .3 m. The final frequency, fl, at the
istream observation (137.2) was determined from the

of the spectral peak. The method using the time lag
juccessive peaks and troughs lacked resoclution at this
mm location due to the difficulty of defining a

>ugh criterion. Typically at this distance, the waves

ngly attenuated.

ires 2.3 to 2.11 show the wave group evolution with
(f%tch increases upwards), in order of increasing
ipness. In each case the most upstream location, 6.1
mntered and plotted. The arrival time of the group

If it propagated at half the phase speed (based on

£0 and k), was calculated for each wavegauge

. The remaining plots are centered on this

Mted arrival time of the group center, based on linear
locity. (This estimate is not actually the linear
locity since separate estimates of frequency and

ir are made instead of using the dispersion relation
them. The estimate used is w/2k). As can be seen,

’>8 propagate faster than group veloc..y predicts. The
and largest steepnesses are seen to deviate the most.

i1se of the smallest wave steepness (Fig. 2.3), this
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Table 2.2

Soliton Estimation

Experiment N ak N N

PKS S, T S.0
78 10 .03 0.4 n.o
79 14 .03 0.6 0.0
80 23 .03 0.9 0.0
75 10 .07 0.98 1.0
76 14 .07 1.4 1.0
7? 24 .07 2.3 1.0
13 ] .10 0.7 1.0
87 13 .10 1.8 1.0
ee 26 .10 2.3 2.0
61 7 .15 1.4 1.0
62 ie .18 2.9 4.0
63 23 . % 4.9 5.0
21 7 .16 1.6 1.0
22 14 .16 3.2 3.0

23 23 .16 5.2 4.0

I WP SRy Ry PR o P U UL AL Y Lo
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is probably due to linear frequency dispersion (low frequency
components running ahead of the group carrier) and due to the
speed estimate being smaller than one based on frequency
alone. (The linear group velocity for the smallest steepness
experiment based on frequency alone is 97.5 cm/s and the

estimate based on half the phase velocity using measured

frequency and wavenumber is 89.4 cm/sec). In the case of the
;T steepest wave groups (Figs. 2.8 to 2.11), this is probably

E.? due in part to frequency dispersion, but also due to nonlinear
effects which in addition to increasing the group speed are
observed to give rise to frequency downshitt;ng of the carrier
frequency. The phenomenon of frequency downshifting will be
discussed in the next section. The middle steepnesses (Figs.

2.4 to 2.7) show propagation somewhat faster than linear group

e ‘..'.7?- ) N ;

velocity predicts (6% faster for E88, Fig. 2.7). This is
probably due to both frequency dispersion of lower frequency
i5 components and nonlinearity. Very little downshifting is
evident for small initial wave steepnesses (Table 2.1). In
r this weakly nonlinear range (ak = .07,.10) we find the best

E? | balance between nonlinearity and dispersion.

Table 2.2 tabulates the number of peaks that met the
crest criterion for the chosen experiments. It also compares

the predicted and observed estimates of the number of

solitons. The theoretical model will be formally derived in

the next chapter, but for purposes of discussion we briefly




J . summarize the model and some pertinent properties of its exact

;{ solutions. In particular, we show how the theortical estimate

for the number of predicted solitons can be made.

‘Zakharov (1968] was the first to derive the two space
dimension cubic NLS equation. This equation governs the
evolution of the slowly varying complex modulation envelope of
deep w;tor surface gravity waves. The equation in one space

dimension is :

2
i LA + (w /2k) A 1 - (w /8k ) A
t o o x 0 0 xX
2 *

g _ - (w k /2) AA A = O (2.1)
. - 0 O
-
- where A(x,t) is the complex modulation envelope
F A(x,t) = Rix,tlexp(i plx,t)) (2.2)
{ and A(x,t) is related to the free surface ni(x,t) as follows:
3
i nix,t) = Red A(x,tlexpli (kK x - w t)} ) (2.3)
. o o
! w and k are the carrier frequency and wavenumber.
s (o) o

x is horizontal distance and t is time. The appropriate

time and length scales for nondimensionalization are:

e a0

2
F. T=(ak ) wt X = (ak ) k (x = ( w /2k ) t] (2.4)
E - o o o O 0O ©
. where ak is wave steepness and X is a frame of reference
* 0
' that moves at the linesr group velocity.
E
g In addition, if we nondimensionalize the envelope by the
g
9
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maximum wave amplitude, we arrive at the dimensionless form:

iA - (1/8) A - (172) A A A = 0 (2.5)
T XX

For initial conditions that decay sufficiently rapidly as
|Xl—?-° .1.e. pulse envelopes, Eq. 2.5 was solved exactly by
Zakharov and Shabat (1972) using the inverse scattering
transform developed by Gardner et al (1967). Particular
soluﬁions to 2.5 take the form:

.5 2 2
A(X,T) = a sech( 2 a (X - UT))exp(-ia T/4 - 41UX + 2iU T)
(2.6)
These are progressive envelope pulses whose height and width
are inversely proportional to each other but are independent

of the speed of propagation U relative to the group velocity

(unlike K4V solitons).

Properties of the exact solution are summarized by
: Zakharov and Shabat {1972] and by Yuen and Lake (1975). For
f our purposes we note the following:
g
-
i (a) An arbitrarily shaped one-dimensional envelope pulse
= will eventually disintegrate into & definite number of
; permanent broqrossivn sech solitons of the form given by
L -

equation 2.6 and a linearly dispersive tail. The number and

structure of the solitons and the structure of the tail are
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completely determined by the initial condition.

(b) The linearly dispersive tail is small and relatively

unimportant. The linear dispersion gives a 1/'f€ amplitude
decay in the tail.

(c) The time scale of formation of these solitons (or
transition time from initial to asymptotic state) is directly
proportional to the pulse length and inversely proportional to

the pulse amplitude.

'(d) For s real initial profile, the number of solitons in

the asymptotic state can be estimated by the formula:

ER) Go a
Ns'r = X &A(K,O)dx =k S ak, fxyds (2.7

where A(X,0) = f£(x) » 0 < f(x) <1

In section 2.3.4 we will see that there is very little phase
variation in the {nitial pulse. Therefore, if we estimate the
pulse as a top hat profile of length L we arrive at the

following formula for estimating the expected number of

solitons:
P
a
N . = = {3 (2.8)
6.1 n ol L 2 ok, NPKS
vhere N is the number of peaks (Table 2.2).
PKS

We now proceed to describe the qualitative features of the

evolution seen in Figures 2.3 to 2.11l.
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Figure 2.3 (Exp 78) shows the evolution of a group of 10
weves of small steepness (ak = .03). There is an {nitisl
modulation of the group. In addition., we observe some lower
frequency waves moving to the front of the group and some
higher frequency waves trailing the group. This is typical of
all the experiments and indicates linear dispersion. However,
for groups of higher initial steepness this linear dispersion
is of much lower amplitude than the group and separates from
it as the waves propagate. For this case of relatively low
smplitude the entire group seems dominated by frequency
dispersion. Basically, the group spreads and attenuates as it
propagates. No permanent-type solitons form nor are any

predicted from the initial condition (Table 2.2).

Figure 2.4 (Exp 77) shows the evolution of a slightly
steeper group (ak = .07) of 25 waves. The modulation starts
from both ends of the group. This is typical of all the
experiments, particularly for longer group lengths, and is
probably due to the starting and stopping transients and the
large number of frequencies present at the ends of the group.
The modulation proceeds from four groups at 30.5 meters to
three groups at 45.7 meters to two groups at 76.2 meters to
one slightly modulated group at 137.2 meters. The amplitude
has decayed over the distance propasgated, and leading small
amplitude low frequency waves and trailing small amplitude

high frequency waves are observed. The predicted number of

.......
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solitons is one, snd the observations indicate that this is
possible, but the evolution appears to be incomplete at 137.2
meters. This is anticipated from predictions of the exact
solution of the cubic NLS equation which states that the
formation time scale of the solitons (or transition time from
initial to asymptotic state) is in direct proportion to the
length of the pulse and inversely proportional to the
steepness. Hence, for long weakly nonlinear groups we expect

the longest evolution time scale.

The next three figures (figs 2.5 to 2.7) show the
evolution for three different group lengths with wave
steepness ak = .10 (Exp 86, 87, 88). 1In figure 2.5 we see the
initial pulse modulate and eventually form into a single
envelope soliton at 45.7 meters. There is an initial group of
small amplitude low frequency waves and a trailing group of
higher frequency waves that disperse away from the central
envelope as it propagates. The soliton remains fairly steady
from 61.1 meters until 137.2 meters although there is some
spreading within the group and a decay in amplitude. Due to
dissipation, we cannot observe a wave group of permanent form.
Rather, we seem to observe a wave group of quasi-permanent
form. It appears to adjust in & shorter time than it
dissipates, but due to energy loss it can not evolve into the
steady asymptotic state that is predicted. This will be

further discussed in section 2.3.3

A dh
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A similar evolution is noted for Exp 87, figure 2.6. A

modulation is seen to start at either end of the group. The

formation of a single envelope soliton occurs at further
fetch, 91.4 meters, than in the previous figure for evolution
of a shorter pulse. Again, dispersive low frequency leading

and high frequency trailing waves are seen.

Figure 2.7 shoys the development of a still longer group
(nominally 25, but actually about 30 waves) of the same
steepness (.10) as in the previous two figures. It appears to
form a pair of solitons, but the time scale of formation is
longer than for the previous two group lengths. A pair is
seen to form at 121.9 meters, but the group demodulates
slightly at still further distance, and the evolution is

incomplete.

Figure 2.8 shows the evolution of a group of 15 waves for
one of the steeper experiments (ak = .15). For these steeper
experiments, frequency downshifting was seen to occur. This
dill be discussed more fully in the next section. However, we
here note that the strongest modulation occurs while the
sideband perturbations to the carrier wave are growing. Once
the downshifting of the carrier occurs, at 61.1 meters in
figure 2.8, the modulation is weaker and the initial pulse
appears to ‘sort out' {nto a succession of envelope solitons.

In figure 2.8, at 137.2 meters, we see four of these groups

Aol od il ¢t
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with the leading groups of slightly lower frequency and larger

amplitude.

Figures 2.9 to 2.11 show the evolut._on for three
different group lengths for the steepest experiments (ak =
.16). The number of predicted and observed solitons agree
fairly well (Table 2.2). The 'sorting out' process again
occurs when the frequency downshifting of the carrier is
achieved. This ‘'sorting out' seems to take longer for a
longer initial pulse. For the longest initial pulse, figure
2.11. the evolution appears to be still incomplete at 137.2

meters.

2.3.2 Downshifting

The phenomenon of frequency downshifting which has been
observed in nonlinear continuous wavetrains was also observed
to occur in wave groups of sufficient steepness. The
downshift was examined using a maximum entropy spectral
estimator. Use of traditional methods of power spectral
density estimation to examine the spectral evolution of wave
groups is limited by the length of the data records.
Frequency resolution, the ability to distinguish distinct
peaks that are relatively close together in the frequency
domain, and a smeared spectral estimate, the result of

windowing, are particularly troublesome for short time series.
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We use the maximum entropy method (MEM) to look at the 3
spectral evolution of the wave groups. This adopts a 4

modelling approach to spectral estimation. The improved

P S

resolution and spectral fidelity result from making more
realistic assumptions concerning the nature of the measured

process outside of the measurement interval other than

bt

sssuming it is zero or cyclic. The improvement is especially

noticeable for short time series. From this modelling

viewpoint, the traditional discrete periodogram estimate is
equivalent to a least squares fit of the data to a harmonic
(discrete Fourier series) model. The maximum entropy model
assumes that the data is autoregressive. The method is

outlined in Appendix 2.A.

Figures 2.12 to 2.18 show the spectral evolution for some 3

of the experiments. The first step in data processing was to j

determine the carrier frequency f0 and then toc band pass

filter around this initial carrier frequency. The band pass

I R

was one hertz in width, centered on the carrier. The spectra

were done on the same one hertz frequency interval using 80 o

poles (80 autocorrelation lags). Figs. 2.15 and 2.18 are 1
[
2

exceptions. The reason behind this choice of narrow frequency
band was to achieve very good resolution of peaks close to the
carrier frequency. In those experiments where downshifting

occurred, the width of the interval always included the

O Dk

downshifted frequency. This was checked by comparison with
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spectra of unfiltered data from the final wavegauge
observation in the channel. Notice that the horizontal axis
is much expanded’ these are narrow-banded spectra. For
comparison, two spectral evolutions for unfiltered data on the
interval (0.1 hz - 3.0 hz] using 100 poles sre shown (Figs.

2.1%5 and 2.18).

The frequency downshifting observed in wave groups seems
to result from a modulational instability. Initially, for
groups of sufficient wave steepness, sidebands are seen to
grow. After a time the lower sideband grows at a faster rate
than the upper sideband. The modulation is strongest when the
lower sideband is smaller than the fundamental. Eventually,
the lower sideband exceeds the fundamental peak. At this
point the modulation appears to have ‘sorted out' into a

succession of quasi-permanent sojitons with the larger

amplitude, lower frequency groups leading. The downshifting
process seems irreversible. Table 2.1 tabulates the frequency
f1 of the spectral peak from the final observation at 137.2
meters. The percentage downshift, df/£0, from the fundamental
is also calculated. No downshifting is seen to occur for the
experiments with lowest steepnesses (ak = .03 and .07). A
small amount of downshifting, about 1 %, occurs for groups of
steepness ak = .10. The biggest percentage downshift, on the

Ff order of 15 %, is seen to occur for the steepest experiments

(ak = .15,.16). The longer groups tend to have slightly
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larger downshifts.

Figure 2.12 shows the spectral evolution of a group of 10
waves of initial wave steepness ak = .03 (Exp 78). The time
development of this group is shown in fig. 2.3. 1Initially at
6.] meters we see that the spectrum is narrow-banded with a
peak located at 0.80 hz. As the group evolves, the location
of the spectral pesak remains fixed, although the spectrum is
seen to become more broad-banded. Recall that this wave group
experiment showed the strongest linear dispersion. We see the
effects of the filter rolloff at the band edges (.3 and 1.3
hz). In two later figures (2.15 and 2.18) we will show
spectra of unfiltered data done on other experiments which
eliminates the filter effect at the edges at the expense of
resolving the sideband peaks. Finally, we note that for this
short group of small initial steepness no sidebands were seen

to grow, and no frequency downshifting occurred.

Figure 2.13 shows the evolution of a group of 25 waves
with steepness ak = .07 (Exp 77) corresponding to the time
evolution shown in fig. 2.4. The initial peak remains fixed
and no sidebands are seen to grow. At 30.5 meters we see a
suggestion of sideband presence, but the amplitudes are more
than 40 db down from the fundamental and do not develop with
distance. Again we see the effects of the filter rolloff at

the band edges, this time at .5 and 1.5 hz. and the spectrum
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is seen to broaden somewhat with evolution.

Figure 2.14 shows the evolution of a group of 25 waves of
initial wave steepness ak = .10 (Exp 68). A small amount of
downshifting (2 %) was seen to occur for this experiment.

Fig. 2.7 shows the time evolution. The initial peak was
located at 0.96 hz. Fig. 2.15 shows the spectrum of the same
group for the unfiltered time series on a larger frequency

interval. Note the sharp fundamental and first harmonic

characteristic of Stokes wavetrains. At 15.2 meters we see
from fig. 2.14 the growth of lower and upper sidebands. The
- effect of the filter rolloff is visible at the band edges:

! fig. 2.15 eliminates this filter effect but does not resolve
the sidebands. At 45.7 meters the lovwer sideband seems to

have grown larger than the upper and to be partly absorbed

Eg into the fundamenisl. The sidebands are no longer
distinguishable at further fetches. At the final observation
the location of the peak frequency is seen to be slightly

[ downshifted (Table 2.1).

Figure 2.16 shows the evolution of a group of 15 waves of
- initial steepness ak = .15 (Exp 62). The initial peak is

located at 1.2 hz. At 45.7 meters the lower sideband has

already exceeded the fundamental, and the modulation here is
the strongest (fig. 2.8). At 61.1 meters the downshifting of

the carrier is achieved, and the initial pulse appears to have
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itself out into a succession of quasi-steady envelope
The spectrum is seen to broaden appreciably from its
state. The pulses are not all of the same frequency.

ling pulse is of slightly lower frequency (the

ted frequency) than the trailing pulse which is close

initial carrier frequency. Some linear dispersion is

ident.

Jj$§- 2.17 and 2.18 show the spectral evolution of a
[ 25 waves with initial wave steepness ak = .16 (Exp
1@ initial peak is located at 1.2 hz. Fig. 2.18 is
trum of the unfiltered time series and shows the
iarmonic. At 30.5 meters we see the presence of

s the lower sideband has exceeded the upper. The
>t the filter rolloff is also evident. Fig. 2.18
tes the filter effect but resolves the sidebands

At 61.1 meters the lower sideband is equal to the

ital. Fig. 2.1l shows that the modulation is

it at 45.7 and 61.1 meters. It takes longer than in
sious spectral evolution for the downshifting to occur.
meters the initial pulse seems again to have sorted
>ut into a train of envelope solitons of increasing

'y. Again the spectra are seen to broaden as the group

Both downshifting (15 %) and linear dispersion are




-
&T
oS
St
o
%
oa
o5
[ S
w t
o
-
] FETCH = 61.1 M
‘g. ) ' _J
'9.68 1.90 1.48 1.60
FREQ (HZ)
-
ST
a-
Sél
o
¥
oce
Q5
[,
) (
o
-
[ FETCH = 36.5 M
w
- — } —
's. 68 1.99 1,48 1.89
FREQ (HZ)
s
B
~N
’-‘D
82
-~ ) o
o
%
o8
ay
[
9T
S
-l
s FETCH = 6.1 M
's.c0 1,48 1.98

T
FREQ (HZ)

1
~
O

[}

:
z‘.’
=
82
~ 5 -+
c
%
oa
Q.
[, =S
wl
o
=
- FETCH = 137.2 M
w
N —4 + —
's.60 1.98 1.48 1.86
FREQ (HZ)
-
§r
H
DU‘;..
~ )
o
%
oa
Q.
™4
uif
o
-
a FETCH = 121.9 M
w
© + + i
's. 60 1.90 1.489 1.08
FREQ (HZ)
[
«
ﬂ*r
n2
sl
~)
o
%
=t
a,
w‘.‘-ﬂ-
o
-
- FETCH = 91.4 M
- 4 + 4
's. 0 1.98 1.48 1.86
FREQ (HZ)

Fig. 2.17 Maximum entropy (MEM) spectral evolution with fetch
for s group of 25 waves of steepness ak = .16 (Exp 23).
Fetches as indicated. Group was bandpassed on the interval
(.7.1.7)hz centered on the initial carrier frequency 1.20 hz.

Filter rolloff occurs at the bandedges.




-80-
a e
o2 o2
cél Sél
o o
3e =
Q4 o
ol m4
wt (_Dga
S <
- FETCH = 61.1 3 FETCH = 137.2 M
é & 3 4 ‘é \ : + —
's.90 1.88 2.98 3.99 '‘s.e8N— 1.80 2.9 3.98
FRE@ (HZ) FRER (HZ)
* e
ol 8'
cHl Sl
i o
e e
Oe Oa
a,; o
C"-- w“."-h-
a8 8
- -
- FETCH = 36.5 2 FETCH = 121.9
“‘O; } $ 4 ‘3. e i 3
's.00 1.98 2.00 3. 00 's.00\_/ 1.88 2.09 3.09
FREQG (HZ) FREQ (HZ)
a -
e 8‘
ae:;«- e;-{-
[ o [a of
W fe
Qe [om 1
Qg oy
T w«u’“'
8 8
-} -}
e FETCH 1M s 91.4
g . s\ / M
's 's. 00~ 1. .98 3.8

. . 2.08 . 09 1.00 2
" Fgé&'(gz) ‘\/ﬁ FREQ (HZ)
Fig. 2.18 Same as previous (2.17) except data is unfiltered
and spectrum is done on larger interval (.1,3.0}hz. Notice the
first harmonic peak (6.1 m), the loss in resolution of

sidebands (30.5 m) and the removal of spurious peaks at the
bandedges of the filter.




AgEd SBNNS 2t 3 2uiaut Raioaeh

L a3n e

BN s aan assa 4
:

CR

-81-

2.3.3 Dissipation of wave energy

A significant amount of wave damping was observed for the
wave group evolution in the channel. To estimate the total
amount of dissipation, a wave packet energy was defined as

follows:

o
E (x)= § o®(ct) at (2.9)
L4 )

where a(x,t) is the wave amplitude. For a wave packet

observed at a fixed position x , we have that a(x o ) = 0.

A modulus of decay (assumed constant) can be estimated

using the energy equation:

{9 2 3 2
at + C3.0 2x ‘(1 o = -6 (2.10)

where Cb‘ is the linear group velocity, and T is the modulus
of decay. For fixed position x, we integrate equation 2.10 in

time to find:
° —
Qz.o ax E?u) = -q E?u) (2.11)

If we now integrate in x from our initial observation at x0 we

find:
<
mle /g ]= % (x=%xo) = -mx-x,) (2.12)

where E_ is the initial packet energy and m is the damping
coefficient which is related to the modulus of decay using the

linear group velocity.
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Figures 2.19 to 2.23 show the logarithm of the packet
energy normalized by its initial value (at 6.1 m) plotted
versus distance along the channel. Also shown is the least
squares line fit to the data points. The slope of this line
was used to determine the energy damping coefficient m. The
wvave amplitude damping coefficient , X , was taken to be half

this value since energy is proportional to amplitude squared,

i.e.,

if EP\,Q = E, expiﬂmkx-x.)w] (2.13)
-m -« (K- xo)

then k) = a.expl a (-x)) = a.e (2.14)

The value of this amplitude damping coefficient, X , is

tabulated in Table 2.3.

There are three primary sources of dissipation for
laboratory surface waves: viscous damping at the bottom and
gsidewall (solid) boundaries, viscous dissipation at the
surface from a contaminating surface film, and capillary
hysteresis associated with tne meniscus at the contact line

between the free surface and the channel wall.

Hunt (1952] examined the damping at the bottom and
sidewall boundaries by invoking viscous boundary layers with
an interior inviscid potential flow. Van Dorn (1966) examined

the damping due to an additional surface boundary layer which

..... . R s -

M dhete 20 o)




e L i e adien aanan aaveme e gen s ame ath Meb bl dhdede sesndt s Jine RN AL e A

v Mg - B
. s i Ea—t )

G SISO S A s s S o Saean Seoi J-tteit Mt St Mt Rt M e A - 1

b

8

~-83-

ARK = .@83 NW = 10 (EXP 78)
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{ Fig. 2.19 Logarithm of packet energy normalized by its initial 4
value plotted versus fetch for a wave group of 10 waves, ak = 1
E ‘ .03 (Exp 78). Least squares line fit to data is also shown. :
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Fig. 2.20 Logarithm of packet energy normalized by its initial
value plotted versus fetch for a wave group of 25 waves, ak =
.07 (Exp 77). Least squares line fit to data is also shown.
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. Fig. 2.21 Logarithm of packet energy normalized by its initial
1 value plotted versus fetch for a wave group of 25 waves, ak =
¥ .10 (Exp 88). Least squares line fit to data is also shown.
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AK = .15 NW = 15 (EXP 62)
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“i Fig. 2.22 Logarithm of packet energy normalized by its initial
= value plotted versus fetch for a wave group of 15 waves, ak =
% .15 (Exp 62). Least squares line fit to data is also shown.
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AK = .16 NKW = 25 (EXP 23)
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- Fig. 2.23 Logarithm of packet energy normalized by its initial
4] value plotted versus fetch for a wave group of 25 waves, ak =
& .16 (Exp 23). Least squares line fit to data {s also shown.
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considered the surface to be horizontally immobilized by a
contaminating film. This state {s characterized by the total
annulment of the horizontal component of orbital velocity at
the surface with the vertical component unaffected by the
film. Extensions and contractions of the surface film act to
create variations in surface tension which in turn dissipate
the waves. From experiments Van Dorn found that dissipation
from the surface layer may often be larger than that due to
solid boundaries. Furthermore. he noted that the surface
tension effect (contamination) is almost always present unless
the surface is specially treated. He found that the effect

increased with time after the initial filling of the wave tank

until a fully contaminated state was arrived at (about one
hour). However, there was no visible manifestation of surface
contamination. The appearance of the water surface was the

ﬁ! same as when it was freshly filled.

Miles (1967] reviews the damping of surface waves in

;’ bounded basins. He reproduces and extends the above boundary
. layer results and analyzes the damping due to capillary

f* hysteresis. From comparison with observed decay rates, which
;’ typically exceed predicted rates based on wall damping alone

P by factors of betwe«n 2 and 3, he concludes that both surface
E5 films and capillary hysteresis are important and can account

F, for the observed discrepancies.
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Capillary hysteresis may well have been an important
source of damping, but it can not be estimated from the data.
Another source of dissipation in our experiments that 2.15
does not account for was gentle wave breaking (no air
entrainment) that was sometimes observed visually for the
steeper experiments. From the sources of dissipation that we
can estimate using 2.15, damping from surface contamination
was by far the most important contribution followed by
sidewall and bottom boundary dissipation, in order of
importance. The expression 2.15 assumes a smooth bottom
boundary. The channel used had a mown grass bottom which
should significantly increase the dissipation. The
theoretical predicted values of the decay rate are somewhat
less than the values calculated from the observations for éhe
lowes. three wave steepnesses (Table 2.3). They are somewhat
larger than those for the experiments with the two highest

steepnesses. In all cases., the largest discrepancy between

the two values was less than an order of magnitude.

Also shown in Table 2.3 are three time scales: the wave
period, the modulational time scale, and the viscous time

scale. The modulational time scale is given by 2.4 to be:
- 7T a
T, / (ak) (2.16)

where T is the wave period. The viscous time scale is defined
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Segur (19611, in estimating the viscous decay of envelope
solitons using the energy equation 2.10, finds that envelope
solitons can be expected to decay at twice the rate of a
uniform wavetrain provided that the viscous decay time is much
longer than a wave period and much faster than the
modulational time scale. This implies that the soliton

formation time is fast enough that the soliton can continually

readjust to maintain the proper shape as its energy is

& dissipatead.

To theoretically estimate the amount of dissipation that
we can expect in our experiments we used the following
relation taken from Segur (1981). ( ¥ is the theoretical

estimate of KX ).:

Y = Sl L1+ K cati () + Colndrlaen)/ eb) ]
Lakh + amh (Aeh) ]

(2.15)

S=(%§)k represents a viscous boundary layer thickness. (e,
) are the inviscid wavenumber and frequency, respectively.
L Y is the kinematic viscosity ( Y = .0L cm /sec). h is the
mean depth in the channel (h = 72 cm), and b is the channel

width (L = 366 cm).

If K = 0, only dissipation at solid boundaries is

considered, and we recover the result of Hunt (1952). If K =

4Pkl
S

¢ l, dissipation at a horizontally immobile surface is also

™

included, and we recover the corrected result of Van Dorn
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t! Table 2.3

Frictional Parameters

' Experiment oA ¥ T T. Tv
{/cm) (/cm) {sec) (sec) (sec)
78 . 00006 . 00002 1.25 1389 510
] 79 . 00007 " 1] (1 "
i: 80 . 00008 " " "
3
. 75 .00006 . 00004 1.04 212 313
[}
- 76 .00006 " " : .
77 . oooos ”" " " "
86 . 00007 . 00005 1.04 104 250
87 .00007 " - " .
88 . 00006 . " - -
61 . 00004 .00010 0.83 37 156
62 .00004 " o " "
. 63 .00005 " . " "
21 . 00004 . 00007 0.83 32 223
22 . oooos 1) " ” "
_ 23 .00004 . " " "
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(2.17)

T,= (x ca,,\q

P see that for the three steepest sets of experiments
scous time scale is much greater than the modulational
cale. Hence, we expect that the solitons can

1ally readjust and are thus best described as waves of
permanent form. For the lowest steepness (Exp 78 - 80),
scosity acts on shorter time scales than the

tional instability and the result is decay from the

l pulse. Exp 75 - 77 show comparable viscous and

tional time scales, with the viscous scale loanger than

julational time scale.

>me further ideas on the relation of viscosity and the
anon of frequency downshifting will be elaborated on in

scussion.

Modulations
* assume the following model for our wavegauge
ations:

1) = Re ( a(x .t) expl i (ut + G(x,.t) ) 1), (2.18)

Jix ., t) is the measurement of surface displacement at
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fixed location x; and w, is the initial carrier frequency. This
models the surface displacement signal as the product of a

rapidly varying carrier wave

expl 1 (JS,t) ) (2.19)

and a slowly varying complex envelope

alx;, trexpl 1 Otx, .t) 1 (2.20)
The amplitude modulation a(x..t) and the phase modulation
©(x,,t) are obtained using the Hilbert transform of the

signal. The frequency modulation is defined as

S+ =0
£(x,,t) = U+ 3 O(x,.t) (2.21)

The method and its assumptions are documented in Appendix 2.A.

Figures 2.24 to 2.41 show the amplitude, phase and
frequency modulations at 6 different wavegauge locations for 3
different experiments with varying group length and wave
steepness. Figures 2.24 to 2.29 show the modulations for a
group of 10 waves with wave steepness ak = .03 (Exp 78).
Figures 2.30 to 2.35 show the modulations for a group of 15
waves with steepness ak = .10 (Exp 87). Figures 2.36 to 2.41
show the modulations for a group of 25 waves with steepness ak

= .16 (Exp 23).

The amplitude modulation is superimposed on the filtered

wave group. Notice the excellent fit. The phase modulation

is defined with the carrier trend removed and has been




=94~

LR As ™ Lo

p—

3 unwrapped (see Appendix 2.A). There is very little phase
variation within the group. Most of the phase variation

occurs outside the group where the amplitude is nearly zero.

> The frequency modulation is defined as the time derivative of.
}g the phase with the carrier added back in. Discontinuities (or
Ei jumps) in the frequency modulation occur where there are local
fﬂ- reversals in phase. Again, there is little variation in the
'§ frequency of the initial group’ a small amount develops with
‘f fetch. Most of the jumps in frequency (hence reversals in

‘Q phase) occuf outside the wave group where there are local

g amplitude minima (Figs 2.26, 2.33). Where jumps 4o occur

5 within the wave groups, they tend to occur where there is a

fﬁ minimum in amplitude modulation (Figs 2.39-2.41).

o

. This technique for demodulating the surface displacement
s signal was introduced from communications theory by

i; W. K. Melville (19681]. He used it to examine the evolution to
» breaking of nonlinear surface gravity wavetrains. He computes
_§ an instantaneous phase speed, the ratio of frequency to

Eé wavenumber modulation (wavenumber is obtained with a second

¥ space measurement), and finds small regions of very rapid,

[

large amplitude variations in phase speed corresponding to the
phase reversals. The large gradients (jumps) that he observes

in the frequency, wavenumber and phase speed always occurred

o] @AY

:
o

in the breaking region and in the neighborhood of local minima

-

RV

in wave amplitude.
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Fig. 2.24 Amplitude, phase and frequency modulations at 6.1 m

g:r a group of 10 waves of initial steepness ak = .03 (Exp
).
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Fig. 2.25 Amplitude, phase and frequency modulations at 30.5 m
: for a group of 10 waves of initial steepness ak = .03 (Exp

vy 78).
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Fig. 2.26 Amplitude, phase and frequency modulations at 6l.1 m
for a group of 10 waves of initial steepness ak = .03 (Exp
78).
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- Fig. 2.27 Amplitude, phase and frequency modulations at 91.4 m
A for a group of 10 waves of initial steepness ak = .03 (Exp
3 78).
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Fig. 2.20 Amplitude, phase and frequency médulations at 106.7
m for a group of 10 waves of initial steepness ak = .03 (Exp

78).
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Fig. 2.29 Amplitude, phase and frequency modulations at 137.2

m for a.group of 10 waves of initial steepness ak = .03 (Exp

78) .
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Fig. 2.30 Amplitude, phase and frequency modulations at 6.1 m

for a group of 13 waves of initial steepness ak = .10 (Exp
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Fig. 2.34 Amplitude, phase and frequency modulations at 106.7

m for a group of 15 waves of initial steepness ak = .10 (Exp

87).
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Fig.. 2.36 Amplitude, phase and frequency modulations at 6l.1l m
: for a group of 2% waves of initial steepness ak = .16 (Exp
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m for a group of 25 waves of initial steepness ak = .16 (Exp
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Our purpose in obtaining the modulations from the
observations at 6.1 meters was to specify both amplitude and
phase modulation as an initial condition to the

cubic-nonlinear Schrodinger equation (Chapter 3). The

modulations from the other observations along the wave channel

were computed for comparison with those from the numerical

evolution.

2.4 DISCUSSION AND SUMMARY

In the long-time evolution we see the initial group
lengthen, attenuate, modulate and, for groups of sufficient
length and steepness, form a succession of envelope solitons.
The two most important aspects of the long-time evolution are
the cumulative effect of dissipation and the phenomenon of
frequency downshifting. The observations show that for wave
groups of sufficient steepness (ak ) .10 ), the downshifting
that is seen in continuous wavetrains also occurs in wave
groups. However, although the peak frequency of the entire
modulated group is downshifted, not all the solitons or
envelope modulations that develop from the initial group have
downshifted. There is a sorting out into a succession of
groups with the leading groups having the downshifted

frequency.

Also for groups of steepness ak ) .10, the viscous time




v A R e R N A A R R R N W W g L  a T ———— Pl R, S gt iy CUN TR . S i i e ‘“
Ealiws Pl LG Rt g e R gy .
»

N

-114-

scale is seen to be much greater than the modulational time
scalo.Aindicating that the solitons or envelope modulations
thaﬁ develop from the initial pulse have time to adjust before
they are dissipated. This suggests that groups which evolve
to their final or ‘asymptotic’ state without being diisipatod

might be expected to form groups of quasi-permanent form.

_ These groups would appear steady over the viscous time scale.

However, it is likely that this energy loss prevents the
groups from evolving to their asymptotic predicted state. We
can think of this loss as changing the quantum state of the
pulse. Both the damping and the frequency downshift are seen

to be irreversible processes.

These effects cannot be modelled by a frictionless
unforced cubic NLS equation, but by specifying the
observations as an initial condition and comparing the
wavetank and numerical evolution, we can test the time scale
of validity of the cubic NLS model. He can also try to
incorporate the effects of dissipation and downshifting into

the model.

We have used the Hilbert transform to demodulate the
amplitude and phase of the waves. Previous studies have
ignored the phase modulation and determined the amplitude
modulation by rectification and low pass filtering. The

rectification process introduces sidebands. Loss of energy to
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the sidebands and choice of a cutoff frequency can result in a
significant loss of modulation energy (Sahar 198l11. There is
no study, to our knowledge, that determines phase modulation
from observations as an initial condition to the cubic NLS
equation. This was‘primarily due to lack of a method for
determining the continuous time series of phase. Theoretical
predictions of the exact solution of the cubic NLS equation
based on the phase of the initial condition (Satsuma and
Yajima 1974) suggested that the determination of the phase
modulation was important for the evolution. In particular, it
is important for predicting the occurrence of the bound state.
There is almost no variation in the initial phase or frequency
modulation, although small variation is seen to develop with

fetch as well as small regions of quite large variation.

Small regions of phase reversal result in discontinuities
or jumps in the frequency. Melville [(1981) suggests these
jumps may be the mechanism of 'crest pairing' (one crest
overtakes another and disappears) observed by Ramamonjiarisoa
and Mollo-Christensen (1979]1. Crest pairing may be the visual
manifestation of the frequency downshift. The jumps in
frequency correspond to similar large varistions in wavenumber
and phase speed. Local large phase speed variations in the
vicinity of amplitude minima may act to merge crests or

troughs (local instability) and to decrease the frequency.

T
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A satisfactory explanation of the frequency downshift has
not been obtained. Nor has the effect that dissipation may
have on wave phase been examined. HWe proposed that the
surface dimping effect (which introduces variations in surface
tension) might act to change the phase of the waves, thus
resulting in lbcal phase reversals and frequency downshifting.
It will be shown in the next chapter that for the linear
dissipative balances that were attempted, no effect on phase
which could account for anything other than amplitude
attenuation could be arrived at. It seems likely that if
dissipation affects phase, it is through a nonlinear coupling.
This is supported in part from observations’ only the steeper

experiments exhibit downshifting.

P Rl g
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Appendix 2.A Data Processing Methods

The data processing was done on a Digital Equipment
Corporation PDP-11/60 computer. Most of the software was
generously provided by G. Sahar. Figure 2.Al is a block

diagram of the processing sequence.
2.A.1 Filtering

The filter is a finite impulse response linear phase
digital filter, designed by a special program written by
J. H. McClellan and documented in McClellan et al. [(1973).
The design algorithm uses the Remez exchange method to design
a filt r with minimum weighted Chebyshev error in

/
approximating a desired ideal frequency response.

3 _ The impulse response was made causal by shifting to the

right in the time domain. This translates into a linear phase

in the frequency domain. This linear phase in the output of
the filter is eliminated by shifting it to the left. The

filtering program uses an overlap-add algorithm (Oppenheim and

o
i

Schafer 1975]).

Savard

2.A.2 Spectral estimation

Y W,

The spectral estimator is of the nonlinear adaptive kind,

Tff'*""'
3
A
]
3
:
3
3
4
4
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Determine experimental
parameters (Table 2.1)
(Initial carrier frequency f,)

_

Bandpass filter

(£5-.5.£5+.5] hz \

Plot
(Follow the group at
linear group velocity)

4

pcorrelation to
lags

J

imum entropy
ctral estimate

Hilbert transform to
get ampltitude and
phase modulations
(carrier removed) 2wmf,

Determine frequency
modulation as the time
derivative of phase
modulation plus the
carrier frequency 2wfg

Fig. 2.Al Sequence of processing
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using the maximum entropy (MEM) or autoregressive (AR) method.
A brief outline of the method is given bc¢:ow. The computer
code was written by Dr. B. Cempbell, Dr. B. Dunwoody, and

M. Briggs. The required input is the autocorrelation of the
signal. It is computed using Rader’'s algorithm (1970] and a

code written by Dr. B. Campbell.

Kay and Marple (1981) give a good overview of new
techniques developed in the last two decades for spectrum

analysis. The summary given below follows their discussion.

We model our (discretized) process as a rational transfer
function which produces the output sequence { x _(t) ) from an
input driving sequence ( w_(t) ) assumed to be a white noise

e
sequence of zero mean and variance ¥ .

The spectrum, S (f), of our data is then:

a a
s, (£) = lHEil s ) = JHEI @2 (2.A1)
If autoregression is a reasonable model for our process, we
write x _(t) as an order p linear regression on itself. The

error is represented by w,(t).

4

xn(t) = w (t) -,(2' .k xn-u( (2.A2)

If A(f) is the inverse filter with z-transform A(z}), i.e.,

A(z) = 1/H(2) , (2.A3)
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where 2 = exp ( i2nfat ), then the relation between the
autoregressive model and the linear filter with rational

transfer function is :

P P |
-m v
A(z) = z-transform otsl- 2 ag x““\i Z a_ z (2.A4)
- M-o

K=
Without loss of generality we assume a, = 1 and incorporate
) 3

any filter gain into ¥
38 a P o 1 3
- |A(z)| = l 1+ Z a_ z l . (2.A5)
e ™Mz
[ Specifying the autoregressive (AR) coefficients ( ‘K) and
.« " a .
h. " e equivalent to specifying the spectrum of our process {
3
. x,.(t) ),
b~ q.a
3 S (£) = B Y (2.R6) .
3 x L s Santm |
o me,
-
. The AR parameters are obtained using the relation between them
t.?j
- and the autocorrelation function which we estimate from the

data. We write thi kth autocorrelation lag as

P

* ™
Rgx(k’ = Etxnh‘x“ ] = El X me-miamx"_mm))
P N |
¢ ,
= - Z aMR‘“(k-m) + E(wn“‘x“ ] (2.A7)

™Mz,
where E( ) denotes the expected value. Since H(z) is assumed

_"_""‘ ARSATMERIAD
fate Wt - s 4 o+ 5V

to be a stable, causal filter we have that

i A Sl
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)

G L)
E(wn“xn 1 = El L i‘ h, w“__“l
Mz g
Py
.
= 2 h,, e S
m:, k‘m
a .¢
T
= h'K
(2.A8)
¢
n a2 , k=0
-]
where 9§ is Kronecker's delta. Using h = lim H(2) = 1, we
™ ° 29
find
P
R (k) =)= Z (.MR“(k-m)\ . k>0
™M=z,
P (2.A9)
- S (a_r_ (-m ) . k=0
~m Xg

Mt‘
These are the Yule-Walker equations. The AR parameters are

determined by choosing p equations, k > 0, and solving for

a
(a)d), k=1, . . ., p. T is determined from the equation

"3
for k = 0. The set of equations that requires the fewest lags

is for k =1, . . ., p. We formulate the following set of
matrix equations, equivalent to (2.A9).
-R“m R, G - - R, Gp) 1 —1" rqa-
R 0 R, o) " R -GaY) Gy 0
. . ‘ - (2.A10)
_Q"‘LP) Ruelp-t) = R“(o\‘ LGPJ bOJ

The above autocorrelation matrix is Hermitian, Toeplitz (all
diagonal elements identical) and positive definite. The

system can be solved efficiently using the Levinson-Durbin
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algorithm. The actual algorithms used can be found in Kay and

Marple (19811].

2.A.3 Hilbert transform

The wave modulation fields were obtained using the
Hilbert transform. Use of this technique was suggested by
Dr. W. K. Melville, who has used the method to study breaking
waves. Although the technique is well known in communications
theory, its application to the study of surface waves is quite
new. Therefore, we give a brief outline of the method and its
assumptions, following the discussion in Melville [1981). The
reader is referred to his paper and to a thesis by G. Sahar
{196811. The actual computation ot the transform can be done
quite efficiently by using a Fast Fourier Transform (FFT).

This exploits the relation between the Hilbert transform of a

& function and its Fourier transform. The computer code was a

modification of a program written by G. Sahar. The method

-

’ assumes that the data is causal and weakly narrow-banded.

Ef’ It g(t) is a real function of time, - < t <@ , then
L

ol define the analytic function

b A

- hit) = g(t) - 1 g(t) (2.A11)

() | ? glt) gt

- A - . Mt

E? wvhere g(t) = H.T.(g(t)] =: = S te-t) (2.A12)

(H. T. ( 1 denotes Hilbert transform of . . .). He use the

el

adh)
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following properties of the Hilbert transform:

> MRLkah

1. H. T. { cos(at + b) ) = - sin(at + b)

L Ao 4
.

RRPARS

2. H. T. ( sintat + b) ) = cos(at + Db)

3. F. T. (§(t)] = 4 sgn (8 F. T. (g(t)] )

(F. T. (] denotes Fourier transform of . . .).

0 -ianst
F.T.lg(t)] =: S zu.)e_ dt
“0d
4. F.T.(h(t)) = 2 F.T.(g(t)] . 8 >0o0ors=90
o ,» 8 <0

5. The Hilbert transform is a linear functional of g.

If we represent our real measured time series gli(t) as a

Fourier series

~
git) =Re ¢ 5 a,expt 1 ¢, 1) (2.A13)
Nz

where a_ and ¢n are the amplitude and phase of the nth Fourier

component, repectively, then by properties l) and S):

o
H.T.(g(t)) = - Im ¢ S a, expl 4, 1) (2.AL4)
Azg

&5

In general, if our data is given as

Y

g(t) = Re ¢ altiexpti ¢ (t11 ) (2.A15)

He define the analytic function h(t)

R YIS,

hit) =: g(t)-1 git) = actlexpli ¢ ()1 (2.A16)

The amplitude a(t) is given by

B sTa 2 1 1

' I
att) = (g>es g 1%

(2.A17)

and the phase ¢(t) is given by

SR, R R A T P . L . [N ) -
. i . - = —J
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-q‘«u = arctan (§ /g) (2.A18)

For our observations we assume the following model:
gix;.t) = Re € alx;,t) expl i (Wt + ©O(x ,t) )] ) , (2.A19)
vhere x;corresponds to a fixed wavegauge location and U, is
the wave carrier frequency. The analytic function hix.t) is

defined as:!

hix, .t) = gix; . t) - { G(x;.t)

= alx;.t) expl 1 (Wt + O(x,.t) )] (2.A20)

If we think of the signal (in time) as the product of a
rapidly varying carrier wave and a slowly varying modulation,

then the complex envelope is described by

Rix;.t) = alx;.t) expl 1 ©(x .t) ) (2.A21)
where a(x.,t) is the amplitude modulation which we determine
using 2.Al7. The phase modulation, 9 (x;,t), is given by

O (x;.t) = dx, . t) - 9.t

(2.A22)
= arctan(-a /7 g) - Ot
using 2.Al8. However, the phase modulation is a continuous
function of time whereas the arctangent is restricted to the
interval (-T/2,+%2). Instead of using the arctangent, we
actually solve for the cosine and sine of Qb which extends our
interval to (- K , T ). Both the principal value of the phase

and an ‘unwrapped’' phase are calculated. The unwrapping
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technique looks for discontinuities in the principal value and
adds in a multiple of 2T to get the continuous phase
function. The carrier frequency J, was determined from MEM
spectra at the most upstream observation. This initial
carrier frequency was removed from the phase modulation for
all the wavegauge signals for a given experiment. This was
done in order to specify a real data initial condition to the
cubic-nonlinear Schrodinger (NLS) equation (Chapter 3). This
squation governs the slowly varying complex modulation
envelope A(x.,t) (carrier removed) of surface gravity waves on
deep water. The further fetches were transformed for
comparison with the numerical evolution. All the data was
bandpass filtered in a band of width one hertz centered on the
carrier. Both the transform method and the cubic NLS equation
imply a weakly narrow~banded assumption. (The Hilbert

transform requires the bandwidth of the spectrum to be less

‘than or equal to 2f,’ Melville refers to Schwartz et al.

(1966)). The carrier frequency is added back in to the

frequency modulation which is calculated as
©(x;, tiat) - O (¥, t-at)
aat

£ix,,t) = I + (2.A23)

NI I
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CHAPTER 3

MODELLING OF SURFACE WAVE GROUP DEVELOPMENT

3.1 INTRODUCTION

The wave group development described in chapter 2 was
modelled numerically using the cubic nonlinear Schrodinger
(NLS) equation. The amplitude and phase modulations from the
most upstream wavegauge observation (6.1 meters! were obtained
using the Hilbert transform and specified as an initial
condition for the numerical model. The transformation from a
spatial evolution in the wave channel frame of reference to a
temporal evolution in the numerical frame was accomplished
using the linear group velocity. This transformation has been
employed by Benjamin and Feir (1967), Benjamin (19671, Chu and
Mei (1970, 1971), and Lake et al [(1977] to make comparisons
between theory and experiment. Further details on the
assumptions made in both the modelling and the comparisons
will be discussed below and at greater length in the

appropriate sections.
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The cubic NLS equation, which we derive in the next

section, describes the slowly varying complex envelope of
gravity waves on deep water. The theory is weakly nonlinear,
narrowv-banded and inviscid. By narrow-banded we mean that the
wvavenumber and frequency are assumed to be slowly varying
about their mean (constant) values. For continuous wavetrains
the cubic NLS equation recovers the modulational instability
of Benjamin and Feir (the growth of perturbations whose
frequencies are sidebands to the carrier wave frequency).
However, the sideband growth remains symmetric about the
carrier., and the equation can not describe a frequency
downshift such as that observed for steep wavetrains (Lake et

al 19771 and as seen in chapter 2 {n wave groups.

The modulational instability does not, however, lead to
thermalization and disintegration of the wavetrain. If
dissipation were present, the growth could perhaps be balanced
and result in steady, limit cycle behavior. However, when
dissipation is absent, as in the inviscid model, recurrence of
the linearly unstable mode is observed. That is, after
reaching a maximum modulation, the wavetrain demodulates and
eventually returns to its initial state. There is neither a
steady end-state nor thermalization of the wavetrain. Instead
we £ind a long-time periodic behavior that is characteristic
of other undamped nonlinear systems and known as the

Fermi-Pasta-Ulam recurrence phenomenon. There have been no
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long-time observations to verify FPU-recurrence for wavetrains *
due to restrictions of wave tank length. However,

observations (Lake et al 19771 indicate that an initially p
uniform wavetrain, after modulating, demodulates and reforms ?
into a nearly uniform wavetrain of slightly lower frequency

(frequency downshift).

So far, we have cited results of the model for continuous
wavetrains. For pulse-like initial conditions (i.e. wave
groups), the cubic NLS equation can be solved exactly using
the inverse scattering transform developed by Gardner et al
(1967). The inverse scattering method does not apply to
continuous wavetrains. The recurrence phenomenon in wave
groups is related to the bound state of solitons predicted by
Zakharov and Shabat [1972] from the inverse scattering
solution of the cubic NLS equation. The bound state is a
long-time periodic behavior with eventual recurrence of the
initial condition. The recurrence cycle does not result from
a sideband instability but rather from a strong interaction
between solitons with identical velocities which remain
superposed. Yuen and Lake (1976] mention that there is no
straightforwvard physical interpretation of the bound state (it
was predicted when the eigenvalues of the related scattering
problem are purely imaginary). They also suggest that
dissipation may rule out the possibility of recurrence in wave

groups. They did not think that they had observed the bound
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state in their wave group experiments although they mention
that the component soliton speed differences were very small
(Lake ot al 1977]). Satsuma and Yajima (19741 4did a
theoretical and numerical study in which they predicted the
occurrence of the bound state from properties of the initial
condition. There has not been an observational study which

tested their predictions.

Thus, in using the inviscid cubic NLS equation to model
the wave group evolution, there are two important effects
which we can not expect to describe: the observed frequency
downshifting of the steeper experiments and the cumulative
effect of dissipation. However, we can use the model in
comparison with the observations to answer several important
questions. What is the limit of validity of the cubic NLS
model? On what time scale does dissipation act? 1In the

presence of dissipation, is recurrence physically realizable?

We propose to describe in detail this recurrence
phenomenon (bound state) for wave groups. From amplitude
modulation alone, it is difficult to determine the type of

wave interaction that is taking place: linear dispersion

RO DIOIII PR S &

(radiation)., soliton or bound soliton. However, the

differences in the phase modulations of the above types of

) (a0
- . . s

behavior seem to be quite distinct. First, we analyze the

phase modulation of exact solutions of the cubic NLS equation
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A E s

to see how the phase evolves for different types of behavior.

Using this as a guide, we can interpret and compare the

Elaliod ba B

development of the phase modulation in the numerical model and

in the observations.

In an attempt to include dissipation in the model, we
have tried various linear balances of dissipative terms with *
complex constant coefficients. Admittedly, this is an

arbitrary procedure. We examine the possible effect that

et conione

dissipation might have on the phase, in particular, the role
dissipation might play in frequency downshifting. At least
for the linear balances that were attempted, dissipation was
shown to affect only amplitude. A decay rate estimated from ’

the observations (Table 2.3) was included to model the

amplitude damping. These viscous numerical evolutions are
also compared to the observations and the inviscid solutions.
Although there is no direct effect on the phase, by changing
the ‘quantum’ of the soliton the long-time behavior of the
dissipated solution was sometimes altered from that of the
inviscid solution and this was reflected in the phase

modulation development.

In the next two sections we derive the cubic NLS equation
and the numerical model. Section 3.4 examines the evolution
from initial conditions for which we have exact analytic

solutions. In section 3.5 we include the effect of
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dissipation. This is followed by a comparison between
observations and numerical solutions, both inviscid and

viscous. Section 3.7 presents a discussion and summary.

3.2 FORMULATION OF THE SCHRODINGER MODEL

3.2.1 Background

Zakharov (1968) was the first to derive the
two-dimensional Schrodinger equation in the context of deep
water waves using a van der Pohl (multiple scales) method.
Zakharov and Shabat (1972] then solved the one-dimensional
cubic NLS equation exactly for pulse-like initial conditions
using the inverse scattering transform. They showed that an
arbitrary pulse evolved into a number of solitons and a
relatively unimportant linearly dispersive tail. Unlike the
soliton solutions of the K3V equation, the velocity and
amplitude of these solitons are independent of each other.
The KdV equation has long been known to describe shallow water
waves of permanent form. It can also be solved exactly for
pulse-like initial conditions using the inverse scattering
method. Zakharov and Shabat examined the stability of the
soliton solutions of the one-dimensional NLS equation. They

found them to be stable in the sense that the solitons survive

pairwise collisions with no permanent change except for a

-
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ble shift in position and phase. The amplitudes and
ities of the solitons remain unaltered. They are also
e or neutrally stable to one-dimensional perturbations
ral in the sense stable but tending asymptotically to a

on of slightly different parameters).

What is principally new compared to KAV solitons is the
bility of the formation of a 'bound’' state of a finite

r of solitons having identical velocities. The simplest
of two solitons is a periodic-in-time solution

cterized by a single frequency. In the case of

itons {t is an arbitrarily periodic scolution

cterized by N(N-1)/2 frequencies.

Proceeding along somewhat different lines, Chu and Mei

. 1971) applied a WKB-perturbation technique to study the
modulation of a deep water Stokes wavetrain. They found
new dispersive terms representing the modulation rate and
e same order as the nonlinear correction were needed to

d the scope of validity of Whitham's therry based on an
ged Lagrangian. Differences between the Chu-Mei

ions and the Schrodinger equation were resolved by Davey
1. Yuen and Lake (1975] showed the equivalence of the
dinger equation to a higher order theory of Whitham's

d. Thus all existing theories yield the same equation to

rder considered, and earlier discrepancies have been

il
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accounted for due to expansions to different orders.

Chu and Mei found that the dispersive term removed the
singularity encountered in the application of Whitham's
theory. They likened Whitham's theory to the Airy equation
where amplitude dispersion causes the wave to continue to
steepen unt’! shocke occur. To extend this analogy they
likened their equations to those of Boussinesq. The presence
of frequency dispersion counteracts the effect of amplitude
dispersion thus olimiﬁating the early occurrence of shocks.
Hence there is the possibility for waves of permanent form
where amplitude dispersion exactly balances frequency

digpersion (soliton solutions).

They proceeded to study the nonlinear evolution of wave
envelope on deep water numerically. One of their equations
contains the envelope amplitude in the denominator’ hence
their calculations break down at the first occurrence of a
node in wave envelope. Based on their calculations they
conjectured that the envelope disintegrates to multiple groups
of waves each of which approaches a stable permanent envelope
with dynamical equilibrium between amplitude and frequency
dispersion. In actuality, the analytic initial condition that
they chose to study numerically was the exact 2-soliton
solution (a hyperbolic secant with width to height ratio twice

that of a soliton). They cannot follow the evolution after

N

.
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the first node occurs, at time T, but what actually happens is

that the initial condition reconstructs itself at time 2T (and
at 2nT. n =1, 2, 3 . . . ). This was pointed out in a
comment by Roskes (1976] who did the numerical evolution using
the Schrodinger equation rather than the equivalent Chu-Mei
equations and hence was able to observe much longer evolution.
He points out that the initial condition used in the
laboratory experiments of Yuen and Lake [(1975) is also that of
a 2-soliton. He suggests that the expected evolution would be

a periodic (period T) nondiverging bound state.

In a reply to Roskes comment, Yuen and Lake [1976]
mention that there is no straightforward interpretation of the
occurrence of a bound state. Hence it would be difficult,
based only on this information, to try to produce the correct
profiles experimentally. Although they attempted to vary the
initial state (sech, sin, etc.), they did not see the bound
state phenomenon,i.e., they did not see the initial condition
reconstruct itself. They attribute their observations to
several possible explanations. First, the initial condition
required may be very sensitive. Secondly, the cumulative
effect of dissipation may become important, perhaps on the
scale of T = recurrence period. This would prevent recurrence

from being observed even when initial conditions are

favorable.
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Although Yuen and Lake do not see recurrence in their
experiments in the sense that the initial pulse reconstructs,
the solitons do not seem to separate. Lake et al (19771
mention that the component soliton phase speed differences are
quite small. This may be due to the observation period not
being long enough. However, it remains open to question
whether they have observed the bound state (solitons do not
separate) where recurrence can not take place due to
dissipation, or whether they have solitons that diverge
(although not observed for long enough time). They do not
describe the phase of their observations. As we see next, the
phase of the initial condition can be used to predict the
occurrence of the bound state (in some cases!. Besides
considering the initial phase, the evolution of the phase in
the cases of linear dispersion, divergent solitons and the

bound state is different.

Satsuma and Yajima (1974) did a theoretical study of the
nonlinear Schrodinger equation as an initial value problem.
They managed to classify certain initial conditions as
yielding nondivergent bound states and certain others as
ylelding the divergent soliton states. They confirmed their
predictions using numerically computed solutions to the
various types of initial conditions. We summarize their main

results in section 3.2.3 after first deriving the governing

equation in the next section.
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3.2.2 Simple derivation

The derivation given in this section follows the rather

elegant variational approach used by Yuen and Lake (1975].

We use x, 2z, t to denote the horizonal coordinate,

vertﬁfal coordinate (positive upwards) and the time. \
2 2

x ' ;5:) is the two-dimensional Laplacian operator, and VU=

2 2 - - . .
(3‘.33) is the two-dimensional gradient operator.

The basic governing equation for inviscid surface gravity

waves on deep water is Laplace's equation within the fluid:

vYq=o | ~0 < ¢yt (3.1)
q(t&) is the free surface elevation. The velocity & s

the gradient of the potential:

G = 9 (3.2)

The bottom boundary condition for a fluid of infinite depth

is:

Ty

‘?5—70 A S (3.3)

The nonlinear surface boundary condition is:

d

- l a 203 - -
9. *8‘93 ¢ (Bev & 2-9) 1 O, 3= qlt) (3.4)
The surface boundary condition is evaluated on the unknown
free surface 1 . The free surface is related to the

potential by:
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1= "3{ 9, + 3 IG.\:‘T) ’ -3=vl(x,t\ (3.5)

For small amplitude waves, we can expand the surface
boundary conditions (3.4) and (3.5) in Taylor series about z =
0. If we expand the velocity potential <9 and the surface
elevation ﬂ in a perturbation series in the wave steepness
parameter € = ak (amplitude x wavenumber) we find Stokes

series solution (1647]).

Instead we follow the variational approach given in Yuen
and Lake (1975). If we can find a Lagrangian L(x,t) to

describe our system, then the evolution of the system is

described by the variation of the averaged Lagrangian:

X S S‘S A dudt = O (3.6)
E 1 Tt

7 where d(‘,t\ = S° Lig,t) d© (3.7)

if a phase function € exists. The characteristic frequency
S and wavenumber W& are given by

9 p) 5

W “ 5 © : Rk = o« (3.8)

The Lagrangian for deep water waves has been shown to be

1
th't\ ""_S;{ 4& + é\d\a + 833 d; (3.9)

For a weakly nonlinear, slowly varying., modulated wavetrain wve

Y o

T,

<2

expand 1 and 4) as an amplitude modulated Stokes wavetrain

e
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1° alex,et) o ® + Ao (ecet) wo e 4. .. (3.10)
Salex, er) 3 o Wa, k
d = —T‘—— b e 4 ‘\: 08 + 3 (1-\;530338“&5

a aky

w_t_; ’ )
¥ 3 wabe b (3.11)

vhere 8 =\ (-wt is the phase function. If we substitute

(3.10) and (3.11) into (3.9) and average we find from (3.7)

="+ 9+ W o+ oup ¢ R TS
a
3 Waoy,, 3 Woaou ko
¥ q ‘:E‘ L B | + éjf (3.12)

Variations with respect to © and & yiaeld, respectively,

(a‘“)t x (caci'\‘ =0 (3.13)
G
- L,a 3 —r

®~§3kii+ alla *(81\.:")“1 (3.14)
(3.13) is the energy equation, and Qé is the linear group
velocity.

~
= +
Cg - a ig{ (3.15)
(3.14) is the dispersion relation. The curvature or
Qll

modulation rate term ( d:) is the additional term first

derived by Chu and Mei (1970, 1971). (3.14) is obtained using
(3.13). These equations are valid to O(eﬂafkf). The system is
closed with a consistency or conservation of wave crast

equation

ke, v+ W =0 (3.16)

To derive the NLS equation, we perturb the phase function

S RSN X oy s -

RN WS VR W T PO Y Ty
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0=0,1+0 (3.17)
where B, = ko-w, t 3 gtz -3 ) 8: =k
Equivalently, (§= 3,4 Ny , W= L, *Tu (3.18)

This assumes a constant carrier wave of wavenumber ko and
frequency (3, . We assume the variations of L3 and
k. are small compared with variations of G. and are

slowly varying.
Vel /e 4 g UGy <« L

If we substitute (3.17) and (3.18) into (3.13), (3.14) and

(3.16) we obtain

LW Do\ (o ~
o, + 3 (8o~ U@ )(8 v 2B 6 )= 0 (3.19)
8o+ A (0187 (Y1 & - tala)
Y o3whl o =o (3.20)
.8

Introducing the complex variable A=a<,(3.19l and (3.20)
combine to become the cubic NLS equation
a ‘(%\A\-(‘ﬁ’)ﬂ - s 8\ ArA =
v et a W, < S\ xR a o'ty =0 (3.21)

If we scale the equation as follows

- L = _ A
L= At 5 7= el T t) A=Al g
(3.21) becomes

. n = 1A - 1,z A =

LA gR“ s lAV*A =0 (3.23)

(3.23) {s the dimensionless form in a frame which propagates

Al
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i ‘.AS_o
at linear group velocity a.'io

3.2.3 Properties of the Schrodinger equation

Zakharov and Shabat (1972] have demonstrated the
existence of an infinite number of conservation laws for the
Schrodinger equation. An enumerable set of these which
conserve certain spatial integrals of A and its derivatives
are called polynomial laws. A similar set of laws has been

found for the K3V equation. We list the first five:

03
C_iw_s;lﬂ\\‘ d% (3.24a)
C.a'vji(l-\'ﬁg' q; A) oS (3.24b)
Cq ~j$:( \Asla - 4 1At ) ds (3.24c)
Cq“'_.S:(AA"“ + ?’4 Aﬂ.‘ Ad ) dy (3.244)

o0

Cen § Tiag B+ 1A= 4 (a)) - 518 014R 4 (3. 2400

The first three conserved quantities have a physical
meaning in the context of the nonlinear Schrodinger equation.
They correspond to conservation of the number of particles
(mass), conservation of momentum, and conservation of energy.
respectively. This interpretation is correct to Zirst order

for the mass and momentum of the wave motion (Yue, 19801].

PPPTT P

IRy
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Equation (3.23) has exact solutions, called solitons,
which are progressive envelope pulses of permanent form whose
heights and widths are inversely proportional to each other
but are unrelated to their speed U relative to the linear

group velocity. The soliton solution to equation (3.23) is

)
given by -‘.:‘éz-.; dUuys+ 2. 07T
Rsu = o PN P o.(Y—Utﬁe (3.25a)

or for equation (3.21) in dimensional form in coordinates
fixed in space:

Alx ) = aud\{(“k (L‘_&-( +U)t-171

(3.25b)
b&w.t _ qk.

eA?{ Lx- (Qk.*.\)t]S

Equation (3.23) also has similarity solutions for
decaying oscillations (radiation) which decay like linear
dispersion as l/ﬁ and contain two arbitrary constants Ao and
E% in amplitude and phase respectively.

Ao 32
Alg 1) = I Q&p{‘é‘_ T+ A2 3mT 48,3720 (3.26)

In section 2.3.1 of chapter 2 we have already discussed
properties of the inverse scattering solution of (3.23) for

pulse initial conditions.

We can put the NLS equation (3.21) in standard form using

the following scaling

PP S
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We - _ kA
T=wt . v=auW-a,t) ; A= 3 (3.27)

to find, in accordance with Satsuma and Yajima (1974],

CA_-la. - \Aava - (3.28)
LAt 3 A“ AV a =o
The soliton solution in the new variables is
-ia2T/a
Z\H‘t) = a adhlax) e (3.29)

Satsuma and Yajima show that the equation is both
Galilean and gauge invariant. By Galilean invariant we mean

invariant under the transformation

,il__. ‘_V‘C ' .Lo =—C
_ (3.30)
ALy e) = eqpliVy-i¢¥g/a ] Ay T)

By gauge invariant, we mean that it is invariant to constant

phase shifts

A'= A3l e (3.31)

An arbitrary pulse evolves into a number of solitons and
an oscillatory tail. The solitons are bound if their
velocities are the same. This occurs if the eigenvalues of
the associated scattering problem have common real parts.
Satsuma and Yajima (1974] tried to relate this eigenvalue

condition to the initial value problem. We summarize their

Y ) PR S, PO S T P Y S Y

A

‘A‘;-|..

e w s
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main results as follows. Write the solution as
cpls,t) |
Al 1) = Al e =R e (3.32)
where R is the amplitude modulation and p is the phase
modulation. Then they showed that

1.) If the initial condition is real and not antisymmetric
pls.o) =0 , AL-5,0) # -R(x,0)

then the solution A is the bound state. The eigenvalues of
the related scattering problem have zero (common) real part.

2.) If the initial value tskes the form

L3, 00 = VF , R(-3,0) # - Aly,0)
then all the eigenvalues have the same common real part and
the gsolution is a bound state. .
3.) If A is a solution to (3.28) and A is real and not

antisymmetric

pl§,0) =0 , Al-5,0) # -Al(y,0)

then we perturb A such that A = A + dA where Im( dA ) {s
nonzero (i.e. small random phase perturbation). Then the
eigenvalues have noncoinciding real parts and the perturbed

solution should break up into moving (divergent) solitons.

4.) If A antisymmetric

Al-1,0) = - A(y,0)

!
hg then the solution breaks up into divergent solitons.

- A e P N S U U S S b S S
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Our wave group data has nearly zero initial phase. Using
the Hilbert transform, we have a method for examining the
phase evolution with propagation distance. We can also, from
exact asymptotic analytic solutions with known injitial
conditions, examine the phase evolution of radiation, solitons

and bound state. These characteristic phase evolutions are

then used to classify the observations and the numerical
evolutions of the NLS model. We next derive the numerical
model and then proceed to study the evolution of model
solutions from a variety of initial conditions (real data and

analytic functions) with comparison to observations.

3.3 NUMERICAL MODEL

He solve the cubic NLS equation using a modified

Crank-Nicholson implicit scheme with second-order centered

P

spatial finite differencing. The scheme and computer code
were take) from a thesis by Yue (1980]). For cumpleteness, we

include the details of the numerical scheme here.

Prior to modelling, data from the most upstream (6.1 m)

D A AU (I LA N AR

observation were converted from wavetank (§.2) to numerical

model (x,t) cooordinates using the linear group velocity.

R AT T,

—

(x,t) = (Cét , */ ca) (3.33)

P

5 The data were then scaled appropriately using (3.22). Data




AROS ™~

BRI SRS Rt

from the further fetches were also transformed and scaled like

the initial condition for comparison.

The finite difference form of (3.23) is

iy N (a2}
o n ar . A-.l"‘ ;ﬁ.‘l"q&" ¢ . ~av @ . nn
AJ‘A;\‘a{(s—W +;lﬂ;‘lqj)
A n-;A"\* A'-‘ . n .3 "N
+ \3 3 (MJ;-" 3 s 3”‘3\ QJ )\ ! @(le Ma) (3.34)

The implicit nonlinear term is estimated using an Euler

scheme that maintains a local truncation error of 0(511).
',

Poesaeal

~ nat " 0 A:“ - Qﬂ: y A
(3.35)

+ 00 A%, a5 )

Equation (3.34) is convergent with global truncation
error(ﬂ&;a'bg;) . The cubic nonlinear term complicates the
stability analysis. However, the Crank-Nicholson scheme is
unconditionally stable for the linear Schrodinger equation.
Yue (1980] provides the details of the linear Neumann
stability analysis. Numerical solutions for reasonable
choices of AT and AJ gave quite good results. The first

conservation law (3.24a) was computed at each time step as a

check on the error

M O e o . - 2
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c (ty - ¢ (o)
- (3 36)
CL(O)

largest final error was five percent. Typically. the

Error

r was less than one tenth of one percent.

The boundary condition used was

- S
1Al >ol X 2 L) (3.37)

EXACT SOLUTIONS

In this section we examine the evolution of exact
ptotic solutions of the Schrodinger equation for initial
itions specified from analytic functions. We try to
acterize the types of behavior thus modelled to use in
sifying the evolution from actual observations discussed

r on in section 3.6.

The nondimensionalized equation that we solve is (3.23).
scales for the variables are given by (3.22). The initial

ition is
Alg,0) = f(v) (3.38)

»pmax £(J ) = 1 due to normalization. We solve for A

7 the numerical scheme of the previous section. We write
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(O3 1)
Als, 1y = Ry, 1) e
= ,er—r‘-? (3.39)

where R represents the amplitude modulation and p represents

the phase modulation normalized by IC

The first five cases that wa consider are for spatially

compact injitial profiles of symmetric sech form:

flsy= s (T 5/6) (3.40)

This form of initial condition is purely real (p = 0). Hence
we use the formula (2.7) to estimate the number of solitons in

the asymptotic state.

‘:a: oo
Ns: ™ _S\ fis)ydy = @ (3.41)

For integer values of ¢ we get an exact number of
solitons. For noninteger G we get solitons plus radiation.
When G < 1, only radiation (linear dispersion) is present.
Since the initial condition is real and symmetric, the results
of Satsuma and Yajima cited in 3.2.3 predict the bound state

of solitons when O ) 2.

As a final example we look at the evolution of an
antisymmetric initial condition which yields divergent

solitons.
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3.4.1 Radiation

We consider a steeper-than-soliton profile of form (3.40)

with T e 1/2.

FGr= s GE §) (3.42)
The asymptotic state contains no permanent soliton and the
evolution is dominated by linear dispersion. The dispersion
or radiation is considered as a slowly varying modulation of
form (3.26) where A,, Bo are now functions of (‘&7). The

amplitude and phase are given by:

RG§, TV = A [T (3.43a)
REYR
POV O = Tz 1T « Ad T + &, ) (3.43b)

The full solution (magnitude of complex envelope) is
plotted in figure 3.1 for -12.95 <¥ <12.5 and 0 < T < 10.
The percent error calculated from the first conservation law
(3.36) is .003 percent. By comparing the centerline (= 0)
amplitude decay to the asymptotic rate (3.43a) we find that
the deviation is small for T[> 5, and at U = 18 the
asymptotic state is fully achieved. From the first conserved

quantity (mass)
© Aa
¢, = § R4y = T Lt (3.44)
L, T

We see that the length scale L of the envelope increases
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linearly with time.

Figures 3.2a and 3.2b show the amplitude and phase
modulation at various times. The amplitude decays 11k0i4€for
T > 5. The initial phase modulation is zero. The phase
evolution for radiation behaves like (3.43b). The phase
appears discontinuous in fig. 3.2b because it is ‘wrapped’
(Appendix 2.AR). It is actually a smooth continuous function,
and the jumps of 21 occur from using the principal value of
the arctangent which is defined on the (expanded) interval
(-%, T ). The initial group is centered at | = O in a frame
that propagates at linear group velocity. The center value of
the phase decreases with time and exhibits a smooth and
symmetric spatial decay from the origin like (-“a ). This
represents the dispersion of wavenumber components in the

moving reference frame.

Figures 3.3a and 3.3b show the amplitude and phase
modulations at four different times ( L = 0, 2, 6, 10}
superposed. Notice that as the centerline amplitude
decreases, and the envelope length scale increases, that the
off-center amplitude increases initially as the group spreads

(radiates).
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Fig. 3.1 Numerical evolution of a steeper-than-soliton initial

profile (1/2-soliton). The magnitude of the complex envelope
is plotted in a spatial frame that propagates at the linear
group velocity, -12.5 < X < 12.5. The length of the time
evolution corresponds to T = 10.
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Fig. 3.2a Evolution of the magnitude of the complex envelope
o plotted at 7 successive time steps (time increases upvwards)
- for the 1/2-soliton initial condition.
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Fig. 3.3a Superposition of amplitude modulation at 4 different
times, T = 0, 2, 6, 10, correaponding to the 1l/2-soliton
initial condition.
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Fig. 3.3b Superposition of phase modulation at 4 different
times, T = 0, 2, 6, 10, corresponding to the amplitude
modulation superposition of fig. 3.3a.
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3.4.2 Soliton

The next example is for an exact one-soliton ( T =1

solution. The initial condition is
{5y = uh (@ 1) (3.45)

The asymptotic solution is given by

T
Aty = ach (@ Y) e (3.46a)
with Riy, 1) = wh {3 ) (3.46b)
-t/
pif,uy = d4it (3.46c)

The solution is plotted in figure 3.4 for -12.5 ¢ { <
12.5 and 0 < T <10. The error is .00l percent. Figures 3.5a
and 3.5b show the amplitude and phase evolution at various
time steps. Figs. 3.6a and 3.6b show the superposed
amplitudes and phases at four time steps (T = 0, 2, 6, 10).
The amplitude modulation shows a steady permanent profile.
The phase modulation shows a constant downward shift in time.
We see some linear dispersion in phase (with zero amplitude)

at the edges due to numerical noise.

3.4.3 Bound state

The initial condition is that for the simplest bound
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Fig. 3.4 Numerical evolutio of a one-soliton initial profile.
The magnitude of the complex envelope is plotted in a spatial

. frame that propagates at the linear group velocity, -12.5 < X
< 12.5. The length of the time evolution corresponds to T =
10.
[ J
a
o
S S >
c uwmininmniiun IO MNIN 1/ //T  o0° 0
L | | S 131301177777
2 :
3 X
- 0
ta
o &
-
b =]
an
,4‘5
-
P..Z_"': ”~
Fj M s E
’ o8y s
T L2 :
) -as -
¥ 22 v
\ « 0 2 [
: aa ¢ 5
wed e

Tine (nondimensional)

R . . PO PP ST S s
L, g e PRr w2 a Al JPEP S Pt PO




........................ T T T T TR . PPy > L ]

-157-

2 T = 10
=. A
[ ] i
R T =8 ‘
s #_///P\\\__
-
a2 T =6
s <_.///\\\__
-
QT T =4
e j\
-
5 T=2
s ,_///p\\\__
-
-
& T =1 F
gs /\
e
=0 T=0
o
=z
= ' A i ' kY
®12.58 -7.58 -2. 12.59 17.5¢  22.58

se 2.58 7.58
NONDIM DISTANCE

Fig. 3.%a Evolution of the magnitude of the complex envelope
plotted-at 7 successive time steps (time increases upvards)
for the l-soliton initial condition.
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Fig. 3.5b Evolution of the principal value of the phase
modulation, normalized by pi, at 7 successive time steps
corresponding to the amplitude modulation of fig. 3.5a.
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- condition.
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3.6b Superposition of phase modulation at 4 different
1, T = 0, 2, 6, 10, corresponding to the amplitude
lation superposition of fig. 3.6a.
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state containing two interacting solitons and one recurrence

frequency. The initial condition, with T =2, 1s

)= s (By/a) (3.47)

The f£irst recurrence of the initial condition takes place
at LU = 12.6. This case was first studied numerically by Chu
and Mei (19711 who showed the initial development but not the
long-time (recurrence) behavior. Roskes (1976] was the first
to show numerically that this initial condition evolved into a

nondivergent bound state.

Figure 3.7 shows the evolution for -12.5 < | < 12.5 and
0 <T < 30. The error at the final time step is .3 percent.
Figures 3.8a and 3.8b show the amplitude and phase
modulations. From the initial condition the soliton evolves
to a narrower pulse of twice the height with symmetric
sidelobes ( U =6.3). Between the sidelobes and the central
pulse we see nodes or zeroces in amplitude. The initial phase
is uniform and zero. It is seen to modulate ( T = 3.2) and
then return to uniform except for 2 discontinuities: a jump
of L connects 2 sides of nearly constant phase. The jumps
occur in ¥ at the location of the amplitude nodes. In the
complex plane this means that A has constant phase angle and

passes through the origin so that there is no discontinuity in

derivative across the node.
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E:Q;ZE; Fig. 3.7 Numerical evolution of a two-soliton initial profile.
Rt The magnitude of the complex envelope is plotted in a spatial
Fm frame that propagates at the linear group velocity., -12.5 < X
> : < 12.5. The length of the time evolution corresponds to T =
. 30. ~
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The phase modulates again ( T = 9.8) as the solitons
interact to reconstruct the initial condition at U =12.6. The
phase is again uniform but with a small constant phase shift
as in the evolution of the one-soliton. The oscillation is
seen to go back and forth betvween two end-states: the initial
condition and the narrower, steeper pulse with sidelobes (the
minimum and maximum in amplitude modulation, respectively).

At each of these 2 end-states the phase is nearly uniform,
with the exception of discontinuities in phase at the nodes of
A. The intermediary stages (growing and decaying modulation)

between these two end-states also recur (T = 3.2, 9.8, 15.8).

Figs. 3.9a and 3.9b show the superposition of four times
(T =0, 6.3, 12.6, 18.9). In amplitude we see that the
recurrence is exact (fig. 3.9a). In phase we see clearly the
small, constant decrease in phase at each recurrence of the

two end-states. A

3.4.4 Soliton plus radiation

The next example is for an initial condition that
represents a soliton plus radiation. The initial condition

takes the form ( 7 = 372):

() = (2 G X/3) (3.48)

The full solution can be seen for -12.% <« " < 12.5 and 0 <
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T < 30 in figure 3.10. The overall picture shows a slowly

decaying recurrence.

The amplitude and phase modulations are shown in
figs. 3.1la - 3.114. The initial condition is like the
previous example for a 2-soliton bound state. There is more
mass in the initial pulse than in the l-soliton state but less
than {s required for a 2-soliton. The initial pulse evolves
into a narrower, steeper pulse with amplitude nodes and
symmetric sidelobes at T = 6.3. The amplitude of this steeper
pulse is 1.5, smaller than that of the previous 2-soliton
which was 2. The initial phase evolution is also similar to
that of the 2-soliton. The phase evolves from initially
uniform (zZero) to modulated at T =3.2 to nearly uniform again
at T = 6.3 except for jumps of /T connecting 2 sides of
nearly equal phase at the locations of the amplitude nodes.
However, the phase is not nearly as uniform as in the
2-goliton case’ we clearly see small ripples in the phase.
Also, the central value of the phase (about s = 0) is lower
than the initial value, in contrast to the 2-soliton case

where it is higher.

There is a damped oscillation between the 2 end-states of
the previous example. The center amplitude decays slowly with
time, approaching its asymptotic l-soliton state of nearly

uniform phase. The decay is not monotone. We see evidence of
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Fig. 3.10 Numerical evolution of a soliton'plus radiation
(3/2-soliton) initial profile. The magnitude of the complex
envelope is plotted in a spatial frame that propagates at the
linear group velocity, -12.%5 < X ¢ 12.5. The length of the

time evolution corresponds to T = 30.
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ther partial recurrence of the steep narrow pulse in

3.10 and in figs. 3.1llc and 3.114 at T = 22. The center
litude is slightly less than at T = 6.3, and the sidelobes
more spread due to the dispersive tail. The phase has
ps at the locations of the amplitude nodes. The time scale
this first quasi-recurrence is longer than in the previous
mple. At T = 30 which is the last tlie shown (fig. 3.1llc),
asymptotic state has not yet been reached. The maximum
litude is about 1.17, and the amplitude of the tail
§ >t ) is still larger than that of a l-soliton. The
iation can best be seen in this growth in amplitude of the
1 at a distance from the origin as in the case of pure
iation (fig. 3.3a). 1In contrast, the amplitude of the tail
the exact soliton solutions is constant and steady

gs. 3.6a and 3.9a).

In the phase modulation the central region of the phase
out X = 0), where the soliton behavior dominates, remains
rly uniform (slight curvature) with small constant shifts
successive times. There is a background of linear
persion as seen from the symmetric decay (strong curvature)
the phase which dominates in the tail ( §I%e0 )  wjith
®, the phase modulation is seen to flatten as the linearly
persive components radiate away, and the soliton

nptotically approaches the uniform phase of the l-soliton.
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3.4.5 Bound state plus radiation

The next example is for an initial condition that yields
a bound state plus radiation. The initial condition is (T =

5/72):

$G5) = ach (212 §75) (3.49)

The overall evolution is shown in figure 3.12 where we
see approximately two recurrence cycles. The evolution is
similar to the previous two examples of 2-soliton and
3/2-soliton. The recurrence time scales are slightly
different in each of the three cases. This can be seen from
the full solutions and from comparing them at fixed times (the
amplitude and phase modulsations for the 5/2-soliton are shown
in f£ig. 3.13). The times chosen are optimal for seeing the

recurrence of the 2 end-states of the 2-soliton bound state.

The evolution is best distinguished by the phase
(figs. 3.13b, 3.134). The large jumps of 2T result from
using the principal value of the arctangent’) the phase is
continuous at these points. We still see the jump of U at
the node locations when T = 6.3 (figs. 3.13a, 3.13b). The
background of linear dispersion is evidenced by the symmetric
decay (strong curvature in the phase) that dominates in the

tail.
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Fig. 3.12 Numerical evolution of a bound state plus radiation
(5/2-soliton) initial profile. The magnitude of the complex
envelope is plotted in a spatial frame that propagates at the
linear group velocity, -12.5 < X < 12.5. The length of the

~~
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corresponding to the amplitude modulation of fig. 3.13a.
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The bound state interaction is characterized, as in
fig. 3.8b, by an oscillation between 2 end-states of maximum
and minimum amplitude modulation. The phase is nearly uniform
at the extremes of amplitude modulation (T = O, 6.3, 23) and
is modulated during the transitions (T = 3.2, 18.9, 30). That
the 2-soliton interaction is still occurring is evidenced in
the modulated central phase behavior at T = 30. This can be
compared to the phase in the previous 3/2-soliton evolution

which approached a uniform l-soliton state. Fig. 3.l4a and

3.14b show a superposition of amplitude and phase modulations
at four times (T = 0, 6.3, 12.6, 18.9). a
3.4.6 Divergent solitons
For our final example we examine the case of divergent
solitons
5yl (B5-.0Va) - ach LR Y 4.0) /2) (3.50)
This case was first examined numerically by Satsuma and
,! Yajima (1974) and is shown in fig. 5 of their paper. The

initial condition is antisymmetric and yields two divergent
solitons of equal amplitude and equal but opposite velocities.
Figure 3.15 shows the evolution. Figures 3.16a-3.16d4 show the

amplitude and phase evolution at various times.
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Fig. 3.15 Numerical evolution of divergent solitons from an
antisymmetric initial profile corresponding to figure 5 of
Satsuma and Yajima (1974]. The magnitude of the complex
envelops is plotted in a spatial frame that propagates at the
linear group velocity, -12.5 < X < 12.5. The langth of the

time evolution corresponds to T = 30.
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times, T = 22, 24, 26, 30, corresponding to the amplitude
modulation superposition of fig. 3.17¢c.
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The phase evolution shows 2 uniform regions of phase
corresponding to the 2 pulses with a jump of ITU connecting the
2 regions where the amplitude node occurs. The solitons do
not interact, as evidenced by the amplitude modulation which
is fairly steady and by the lack of phase modulation. The
phase remains uniform in each of the two regions, with slight
constant shifts at successive times and slight curvature at
the edge resulting from linear dispersion from numerical

noise.

Figs. 3.17a and 3.17b show amplitude and phase
modulations superposed at T = 0, 6.3, 12.6, 18.9. Figs. 3.17c
and 3.17d show amplitude and phase modulations superposed at T

= 22, 24, 26, 30.

3.4.7 Summary

The soliton evolution is characterized by a locally
uniform phase ( Py = ?" = 0) with small constant shifts in
time. The bound state evolution is characterized by a locally
uniform phase ( 1\ s 0) at times of minimum and maximum
amplitude modulation. Undulations in phase occur during the
growth and decay of modulation. Radiation is characterized by

a negative curvature in the phase (Pgy < 00
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3.5 INCLUSION OF DISSIPATION

An attempt was made to include dissipation in the model,
and in particular to examine the effect that dissipation might
have on the phase. The motivation behind this was to account
for both frequency downshittln§ and dissipation, neither of
wvhich can be modelled using'tho inviscid NLS equation.

Because the observed downshifting seems to be an irreversible
process, dissipation seemyd a strong candidate to account for
it. Also, an examination of the effect of dissipation on

phase did not appear to have been investigated.

In this section we look at two types of dissipative
terms. One is the usual linear drag normally usoﬁ to account
for amplitude decay, but with a complex coefficient so that it
can affect the phase. The second type of term is wavenumber
dependent. A frequency downshift in the wave channel frame of
reference corresponds to a wavenumber shift in the NLS frame
of reference. A dissipation which acted preferentiaslly on

higher wavenumbers could account for a downshift.

This examination is, admittedly, arbitrary. There are
other processes, such as a selective instability, which could
cause a downshift. The most we can hope to point out is
vhether dissipation could have such an effect, but ﬁot to

determine if it is dominant. The conclusion is rather
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interesting in that it seems these linear dissipative balances
have no cumulative effect on the phase. In each case we are
able to transform back to the NLS equation with real

coefficients.

He summarize as follows. We consider the following form

z8 of the NLS equation:

& ‘ Lo

i, A v 3 AL 3 IATAR < -mA Y ')Ax (3.51)
P Case 1.) Consider

1=o

(3.%2)
MTKeig  ApeR ap«d
We make the transformation
B= Ae’ = e
(3.53)
g= B+ pt
Then (3.51) becomes
s L a - ®
‘B‘h* 8 B, v a \BI"R = - (3.54)

where (X 4{s real. We arrive at the NLS equation for B with

real damping coefficient. The modulation frequency and

wavenumber are defined as

]
= 7 A Q = -9 -
2 ¢ § (3.%5%)
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from the complex dissipation, but not a mechanism for a
downshift with evolution.
Case 2.) He consider a wavenumber dependent dissipation

M= 0
v\# 0 (3.56)

We make the transformation
i(dq:\‘i(a1ft‘

®= Ae

(3.57)
@ = B4 Hax ¢ Ql\at
Then B satisfies
s 3
Bt B ta IRPB =0 (3.58)
The modulation frequency and wavenumber are
- - - a
A= ~6 - aq
(3.59)

K = 6‘ + ‘{1
Again there is a small, constant shift in both wavenumber and

frequency but no time-dependent downshift.

To model the effects of the amplitude damping the

numerical code was moditiod to the form (3.51) with q = 0

and | purely real. This is equivalent to damping of the

~ g
;-
.
H

form included in the energy equation (2.10). The real

coefficient, o , was estimated from the observations as

U
ale

L A sl
LRSI

-l

described in section 2.3.3 and tabulated in Table 2.3
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Ta
{‘ 3.6 COMPARISON OF MODEL AND OBSERVATIONS

3

;g In this section we make comparisons between observations
" and numerical solutions for 7 experiments of varying steepness
:é and group length. In each case we show a 3-D plot of the

g overall numerical solution of the inviscid equation (3.23) and
ﬂ‘ the viscous model (3.51). These are only intended to give a
ﬁ qualitative picture of the evolution since the details are

ii somewhat obscured.

&f

g WHe then compare the amplitude and phase modulations of

g the observations at fixed fetches to the numerical solutions
%; at times corresponding to those fetches. The initial

§ condition specified from the observation at 6.1 meters is

’? exactly the same for the observations and the numerical model.
"; The amplitude and phase modulations were obtained using the

? Hilbert transform. They were nondimensionalized by equation
p: (3.22) using the scaling of the initial condition. The

carrier frequency was removed. The time series were centered
- based on propagating the initisl observation down the channel
at the linear group velocity as described in chp 2 (section
2.3.1). This optimizes comparison with the NLS model which
describes the evolution of the group envelope (carrier

removed) in a frame that propagates at linear group velocity.

The spatial grid was chosen subject to three conditions:

...............
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maximize the amount of data used, obtain a reasonable mesh
size and have a sufficient distance between the end of the
group and the grid edges so that the first conservation law is
satisfied within reason. The Hilbert transformed data files
are 4096 points long. The initial éondition and subsequent
comparisons typically use twice that many points. Therefore,
the beginning and end are padded by the same constant value
that matches to the start of the group. The first and last
eleven points are tapered to zero to oxaétly match the
boundary conditions. The length of the (nondimensional) time
evolution was chosen to correspond to the length of evolution
in the wave channel. The steepest experiments have, thus, the

longest evolution times.

The phase modulation in this section is defined with the
opposite sign of the phase in chapter 2, as determined from
the Hilbert transform, to be consistent with the definition in
the NLS model. The phase we show here is also wrapped.

(I.E., it has jumps of 2t from principal value of the arc

sine and cosine functions).

The comparisons at each fetch are not exact. First,
there is an error introduced in using the linear group
velocity. Secondly, the time chosen is taken to be the
closest grid point to the exact time calculated using linear

group velocity. The phase evolutions of the exact solutions
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(section 3.4) show how different the time evolution of the
phase appears for slightly different behavior at the same
times (2-soliton, 5/2-soliton, 3/2-soliton) as well as for one

solution at different times.

What we hope to illustrate here is the overall character
of the phase evolution based on insight gained from the exact
solutions. 'No compare the overall phase behavior between
observations and numerical solutions. From amplitude
modulation we can estimate the time scale on which dissipation
becomes important. The effect of dissipation can also be seen
in the change in character of the phase evolution between

viscous and inviscid numerical results.

Figures 3.18 and 3.19 show the full inviscid and viscous
solutions, respectively, for a group of 10 waves of small wave
steepness ak = .03 (Exp 78). The observations have been
discussed previously in chapter 2. The numerical evolution

vas done for -9.0 < § < 9.0 and 0 < T < 2.5.

This group evolution is dominated by linear dispersion
(radiation). In figure 3.18 we can clearly see the radiating
components along lines of constant 3 Lt » indicative of
linear dispersion. The lengthening of the group, as estimated

by eq. (3.44), is linear in T .
q

-
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! . Fig. 3.10 Inviscid NLS numerical evolution for a wave group of
10 waves, initial steepness ak = .03 (Exp 78). Spatial frame
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Fig. 3.19 Viscous NLS numerical evolution for a wave group of
10 waves, initial steepness ak = .03 (Exp 78} Spatial frame
-9 ¢ X ¢ 9 and time interval O < T < 2.5.
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Fig. 3.21a Amplitude modulations from observations,
: nondimensionalized at each fetch by the initial condition
,i scaling, for the evolution of a group of 10 waves, initial
E steepness ak = .03 (Exp 78).
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Fig. 3.21b Amplitude modulations from the inviscid NLS
solution, at times corresponding to the fetches in (a), for
the evolution of a group of 10 waves, initial steepness ak =
.03 (Exp 70).
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Fig. 3.21c Amplitude modulations from the viscous NLS
solution, at times corresponding to the fetches in (a), for
the evolution of a group of 10 waves, initial steepness ak =
.03 (Exp 78).
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Fig. 3.22a Phase modulations from observations, principal
value and normalized by pi, for successive fetchesfor the

evolution of a group of 10 waves, initial steepness ak = .03
(Exp 78).
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Fig. 3.22b Phase modulations from the inviscid NLS solution,
at times corresponding to the fetches in (a), for the
evolution of a group of 10 waves, initial steepness ak = .03

(Exp 78).
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Fig. 9.22¢ Phase modulations from the viscous NLS solution, at
times correspending te the fetches in (a), for the evolution
of & greup of 10 waves, initial steepness ak = .03 (Exp 78).
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A comparison of the amplitude modulations (figs. 3.21 a,
b, ¢) shows that the observed group (fig. 3.2la) is strongly
attenuated. The comparison between observations and the
inviscid model (fig. 3.21b) is quite good at 15.2 and 30.5
meters. (Note that in figs. 3.21 b and ¢ the plots are
labelled by fetch, actually they are the times of the solution
that correspond to those fetches). The effect of the damping
becomes somewhat evident at 45.7 meters, and more markedly in
the subsequent evolution. The inclusion of a constant modulus
of decay (fig. 3.2l1c), estimated from the observations. gives
remarkable agreement for the entire evolution (137.2 m).
There is no suggestion of soliton behavior in the amplitude

modulation, merely a spreading and decay.

The initial phase p(0) can be seen in fig. 3.20. It is
basically constant (fﬁ = ?&1 = 0) within the group. The phase
modulations for the observations (fig. 3.22a) and for both of
the numerical solutions (figs. 3.22b,c) agfoo very well, in
both general character and, at early fetches (time steps) in
detail. The phase evolves from initial uniformity (6.1 m)
imposed by the wavemaker to a modulated state characteristic
of wave interaction or growing modulation (15.2 m, 30.5 a,
45.7 m). This modulated character typifies the bound state as
it passes between its minimum and maximum modulation. The
final state shows the strong negative curvature ( ?‘1 < 0)

characteristic of radiation. The evolution thus seeams to

............




consist of an initial forced pulse that disperses linearly.
He start from an imposed uniform phase characteristic of a

soliton or bound state, followed by modulation and radiation.

The next example is for a group of 25 waves of wave
steepness ak = .07 (Exp 77). The full inviscid and frictional
numerical solutions are shown in fig. 3.23 and 3.24. The
numerical evolutions were done for -21.0 < § < 21.0 and 0 <

T < 5. The dimensional initial condition is shown in

fig. 3.25.

The amplitude modulation (figs. 3.26 a,b,c ) for the
observations and the numerical solutions agree quite well
until 106.7? m. Dissipation then becomes important. The
observations (fig. 3.26a) show a steady, single envelope from
106.7 to 137.2 meters. The inviscid solution (fig. 3.26b)
shows a continuation of the modulation into 2 group envelopes
which became apparent in all 3 figures at 76.2 m. It looks as
though the inviscid solution might evolve to a multi-soliton,
as in the theoretical estimate (NsF. 2.3, Table 2.2).

However, as we see next, the phase indicates this is not so.
The frictional solution (fig. 3.26c) is not as strongly damped
as the actual observations. It compares better than the
inviscid solution, but it shows the same modulation to two

groups, only damped, that we see in the inviscid evolution.

The observations (fig. 3.26a) do not modulate further after
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Fig. 3.23 Inviscid NLS numerical evolution for a wave group of
25 waves, initial steepness ak = .07 (Exp 77). Spatial frame
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Fig. 3.24 Viscous NLS numerical evolution for a wave group of
25 waves. initial steepness ak = .07 (Exp 77). Spatial frame
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Fig. 3.26a Amplitude modulations from observations,
nondimensionalized at each fetch by the initial condition
scaling., for the evolution of a group of 25 waves, initial

steepness ak = .07 (Exp 77).
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Fig. 3.26b Amplitude modulations from the inviscid NLS
solution, at times corresponding to the fetches in (a), for !

the evolution of a group of 25 waves, initial steepness ak =
.07 (Exp 77).
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i evolution of a group of 235 waves, initial steepness ak = .07
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76.2 m. At 137.2 m, in fig. 3.26c, the frictional solution
modulation shows a single envelope again. Finally, we note
that because of its weak nonlinearity and long group length,
this group evolution should take (relative to other

experiments) the longest time to reach its asymptotic state.

The phase modulations are shown in Figs. 3.27 a,b,c.

They show remarkable agreement and are different from the
previous phase evolution (figs. 3.22 a.b.c). There is a
slight linear trend in phase within the group ( Py =
constant) indicating that not all the carrier frequency was
removed. The overall phase i{s very flat within the group (

By = 0), with quite small undulations. This uniform phase
is indicative of soliton behavior or the bound state at an
extremum (maximum or minimum) of modulation. Linear
dispersion (radiation, P‘S < 0) can be seen at the edges of
the group. Most of the discontinuities of 21T are due to
principal value: however, the initial jumps in phase (moving
inY from the center of the group at Y = O outwards) are
located at the ends of the group where amplitude minima

{nodes) occur.

The next two examples are for wave groups of the same
wave steepness, ak = .10, and different group lengths: 15
vaves (Exp 87) and 25 waves (Exp 86). 1In order, the number of

predicted solitons for each case vas NST'. 1.8 and 2.3 (Table
[}
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For the group of 15 waves, the full solution is shown in
figs. 3.28 and 3.29 for the inviscid and viscous cases,
respectively. The solution was calculated on the interval

-29.3 ¢ ¥ <29.3and 0< U < 10. The dimensional initial

condition is shown in fig. 3.30.

" The amplitude modulation is shown in figs. 3.31 a, b, c.
r.l
The agreement is good between all three until 76.2 meters.

The agreement of the frictional numerical solution

(£ig. 3.31c) with the observations (fig. 3.3la) for the entire

evolution is striking.

The initial condition for the phase is shown in

£ig. 3.30. It is uniform ( Py = T&Y = 0) within the group.

The phase evolution in the observations (fig. 3.32a) is

DA B wa e

basically like that of the l-soliton (uniform) with some small
undulations. As one moves outward in ‘ from the packet
{E center at § = 0 we see linear dispersion ( Pyy < O). The
ﬁ phase evolution of the frictional solution (fig. 3.32c) agrees
- quite well with the observations. We notice that beyond 76.2
i meters, the amplitude modulation of the observations and the
Ei inviscid model (fig. 3.31la,b) differ due to dissipation.

D |

These differences are also evident in the phase modulation

(figs. 3.32a,b). The inviscid amplitude modulation

T e atltat.t
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Fig. 3.31a Amplitude modulations from observations,
nondimensionalized at each fetch by the initial condition
scaling, for the evolution of a group of 13 waves, initial
steepness ak = .10 (Exp 87).




LI ol e sk e asus aens ol aal - RARE-aaluca dae

s
4
[
L
9
L
L

[
L

r——————

=226~

a ‘~v’\//\ﬁl\\/~v~L FETCH = 137.2 M
3 _ FETCH = 121.9 M
5

2 b FETCH

2

166.7 M

1.50 0.08

3
a
3T FETCH = 76.2 M
2 AVVVA//\\\Ar-
s -
QT FETCH = 45.7 M
s 44w/mq\u~A
s v
2 FETCH = 38.5 M
: ace
4 z2 FETCH = 15.2 M
Q—
=
‘~ $ + A‘ —e 4 4 —
®.29.26 -19.26 -9. 10.74 28.74 98.74 48.74

26 9.74
NONDIM DISTANCE

Fig. 3.31b Amplitude modulations from the inviscid NLS
solution, at times corresponding to the fetches in (a), for.

the evolution of a group of 15 waves, initial steepness ak =
.10 (Exp 87).
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Fig. 3.31c Amplitude modulations from the viscous NLS
solution, at times corresponding to the fetches in (a), for
the evolution of a group of 135 waves, initial steepness ak =
.10 (Exp 87).
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Fig. 3.32a Phase modulations from observations, principal
value and normalized by pi, for successive fetches for the
evolution of a group of 13 waves, initial steepness ak = .10
(Exp 87).

WP I S USRS P Y VS SO S U




-229-
s | FETCH = 137.2 M
CALi ;
RILE i
2
<
L
S FETCH = 121.9 M

‘

FETCH = 106.7 M

1.08

E
'

1.08

t

FETCH = 76.2 M

FETCH = 45.7 M

[ N AR

FETCH = 36.S M

:

a
~
u.
e FETCH = 15.2 M
I-
a
~%
2
'229.26 -19.26 -9.26 0.74 18.74 28.74 39.74 40.74
NONDIM DISTANCE

Fig. 3.32b Phase modulations from the inviscid NLS solution,
at times-corresponding to the fetches in (a), for the
evolution of a group of 15 waves, initial steepness ak = .10
(Exp 871,

dhaccbuiiodincn i den W S PR N PO Sk




5 -230-
.
g : | FETCH = 137.2 M
:: B RILAE "‘
P~ - i
s
! :
% 2 FETCH = 121.9 M
A :
2 i FETCH = 186.7
g 3|
: s FETCH = 76.2 M
l {
[
s ] ' ~
3 | FETCH = 45.7 M j
2 ]
2 FETCH = 3.5 M ‘
o
2 ﬁ
ol ]
Nt 9
W 9
e FETCH = 15.2 M {
I—
Q. 1
1
4 , — ey + + 4 |
-29.26 -19.26 -9.26 .74 10.74 28.74 38.74 48.74

NONDIM DISTANCE
Fig. 3.32c Phase modulations from the viscous NLS solution. at

times corresponding to the fetches in (a), for the evolution
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(£ig. 3.31b) beyond 76.2 meters shows growing modulation of a
steeper, narrower central pulse with amplitude nodes and
sidelobes. It is most like the state of maximum modulation
for the 2, 3/2, or 5/2 soliton of section 3.4. The phase is
also characteristic of these states (bound state plus
radiation). It has a central region of uniform phase
connected on either side by jumps located at the nodes in
amplitude. The form of dissipation chosen can have no direct
effect on the phase, only amplitude. Yet in comparing the
inviscid and viscous model results we see that there is an
indirect effect on the phase. The damping has, in a sense,
changed the ’'quantum’' of the solution so that a l-soliton
asymptotic state is reched more quickly than might be
anticipated from the predicted number of solitons Ns;r= l1.8.

The next example is of a longer group of 25 waves (Exp
88) of the same initial steepness as the previous example (ak
= ,10). Figures 3.33 and 3.34 show the full inviscid and
viscous solutions, respectively, from -31.3 < Y <31.3anda o0
< T < 10. The dimensional initial condition is shown in

figure 3.3S.

The amplitude modulations are plotted in fig. 3.36 a, b,
c. The observations (fig. 3.36a) and the frictional numerical
solution (fig. 3.36¢c) agree very well. Dissipation becomes

important at 76.2 meters, as seen from comparison with the
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T T

Fig. 3.34 Viscous NLS numerical evolution for a wave group of

25 waves, initial steepness ak = .10 (Exp 88). Spatial frame

-31.3 < X < 31.3 and time interval 0 < T < 10.
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the evolution of a group of 25 waves, initial steepness ak =
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Fig. 3.36c Amplitude modulations from the viscous NLS
solution, at times corresponding to the fetches in (a), for

the evolution of a group of 25 waves, initial steepness ak =

.10 (Exp 88).
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Fig. 3.37a Phase modulations from observations, principal
value and normalized by pi, for successive fetches for the
evolution of a group of 23 waves, initial steepness ak = .10
(Exp 88).
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inviscid solution (fig. 3.36b).

The phase modulations are shown in fig. 3.37 a, b, c.
The observations (fig. 3.37a) show the phase evolution
characteristic of a soliton. The phase is basically uniform
Py = T&Y = 0) with small shifts at successive fetches.
There are small undulations in the phase. The phase of the
frictional NLS solution (fig. 3.37c) agrees well. The initial
jump in phase occurs at the ends of the group where there are
amplitude nodes. At the edges of the group, we see radiation
( Psy < O). The inviscid phase evolution (fig. 3.37b), as in
the last example, is initially uniform ( Py = Pyy = 0) like
a soliton or bound state. At 76.2 m, where dissipation is
first noticeable, rather than remain uniform as do the
observations and the frictional numerical solution, the
inviscid solution modulates (fig. 3.37b). The phase is like
that of the bound state (372, 2, or 5/2 soliton states) as it
approaches a maximum modulation. The jumps in phase occur

within the group at amplitude minima or nodes.

The last three examples are for the steeper experiments
and longer group lengths with larger estimated number of
solitons. Figures 3.38 and 3.39 show the full inviscid and
viscous numerical solutions for a group of 15 waves of
steepness ak = .15 (Exp 62). They are computed for -31.%5 <

Y < 31.5 eand 0 < T < 40. Figure 3.40 shows the initial
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Fig. 3.38 Inviscid NLS numerical evolution for a wave group of
15 waves, initial steepness ak = .15 (Exp 62). Spatial frame
-31.5 < X < 31.5 and time interval O < T < 40.
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u Fig. 3.39 Viscous NLS numerical evolution for a wave group of
15 waves, initial steepness ak = .15 (Exp 62). Spatial frame
-31.5 < X < 31.5 and time interval 0 < T < 40.
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Fig. 3.4la Amplitude modulations from observations,
nondimensionalized at each fetch by the initial condition
scaling, for the evolution of a group of 13 waves, initial
steepness ak = .15 (Exp 62).
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Fig. 3.4lc Amplitude modulations from the viscous NLS
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the evolution of a group of 15 waves, initial steepness ak =

.15 (Exp 62).
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Fig. 3.42b Phase modulations from the inviscid NLS solution,
at times corresponding to the fetches in (a), for the
evolution of a group of 15 waves, initial steepness ak = .15
(Exp 62).
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Fig. 3.42c-Phase modulations from the viscous NLS solution, at
times corresponding to the fetches in (a), for the evolution
of a group of 15 waves, initial steepness ak = .15 (Exp 62).
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condition. The estimated number of solitons is 2.9 (Table

2.2).

The amplitude modulations are shown in figs. 3.41 a, b,
¢. The amplitude modulation is observed to be strongly
attenuated. (fig. 3.4la). (Also, it is normalized by the
maximum upstream amplitude). The frictional NLS (fig. 3.4lc)
agrees well until 106.7 m. It is more strongly damped than

the observations, as we will see from the phase modulation as

well.

The observed phase modulation (figs. 3.42a) shows a
central region of soliton-like behavior that is uniform ( P‘ =
0), with undulations. At 30.5 m and 45.7 m this central
region is broken up by phase jumps at local amplitude minima.
The amplitude modulation (fig. 3.41la) shows a growing
modulation at these first three fetches. From 76.2 m on,
there is a small central region of phase that remains flat,
and a strong background of radiation ;ﬁx < 0). This is not
a bound state’ it appears to have been strongly affected by
dissipation so that thorg is perhaps a central soliton in a
background of linear dispersion. The numerical inviscid
solution (fig. 3.42b) indicates a bound state type character.
There is a growing modulation (figs. 3.41b and 3.42b), a
slight demodulation at 76.2 m where the phase becomes more

uniform, follwed by growing modulation. The phase modulation
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(£ig. 3.42b) contains jumps within the group. The frictional
solution (fig. 3.41lc), from amplitude modulation, is more
strongly damped than the observations. The phase modulation
(£ig. 3.42c) suggests that it is totally dominated by

radiation.

The next example is for a group of 15 waves of steepness
ak = .16 (Exp 22). Figures 3.43 and 3.44 show the full
numerical solutions. Figure 3.45 shows the dimensional
initial condition. The evolution was done for -33.5 < §J <

33.5 and 0 ¢ T < 45.

The amplitude modulations are shown in figs. 3.46 a, b,
c. The observations (fig. 3.46a) and the frictional NLS
solution (fig. 3.46c) agree fairly well. Dissipation becomes

important at 76.2 meters.

The phase modulations are shown in figs. 3.47 a,b,c. As
in the previous case for the same group length and slightly
smaller steepness, there appears to be more coherence in the
observed phase modulation (fig. 3.47a) than linear dispersion
would give. The central region of phase is uniform with jumps
occurring within the group where local amplitude minima occur
(45.7 m, 76.2 m). The bound state type of modulation, with
growing and decaying modulation, is observed in the inviscid

model solution (£ig. 3.47b) but not in the observations. The
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Fig. 3.43 Inviacid NLS numerical evolution for a wave group of
135 waves, initial steepness ak = .16 (Exp 22). Spatial frame ~
=33.9 < X < 33.5 and time interval O < T < 45. o
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Fig. 3.44 Viscous NLS numerical evolution for a wave group of
15 waves, initial steepness ak = .16 (Exp 22). Spatial frame

-33.95 ¢ X € 33.5 and time interval O < T < 45. ~
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: Fig. 3.46a Amplitude modulations from observations,

nondimensionalized at each fetch by the initial condition
scaling, for the evolution of a group of 13 waves., initial
steepness ak = .16 (Exp 22).
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Fig. 3.46b Amplitude modulations from the inviscid NLS
solution, at times corresponding to the fetches in (a), for

the evolution of a group of 135 waves, initlal steepness ak =
.16 (Exp 22).
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Fig. 3.47b Phase modulations from the inviscid NLS solution,
at times corresponding to the fetches in (a), for the

evolution of & group of 15 waves, initial steepness ak = .16
(Exp 22).
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frictional NLS solution (fig. 3.47c) is dominated by linear

dispersion.

The last example is that of the longest (25 waves)
steepest wave group, ak = .16 (Exp 23). Figures 3.48 and 3.49
show the full numerical solutions for -29.1 < § < 29.1 and O

< T < 40. Figure 3.50 shows the initial condition.

The amplitude modulation can be seen in figs. 3.%50 a,b,c.
The observations (fig. 3.50a) and the frictional NLS solution

(fig. 3.50c) show reasonable agreement.

The phase modulations are shown in figs. 3.52 a,b,c. In
all three cases the behavior is characteristic of the bound
state. Note in fig. 3.52a the phase jumps occuring near
amplitude minima: 30.5 m, 45.7, 121.9. The frictional phase
modulation (fig. 3.52¢) also suggests bound state type
behavior. Although the bound state phase modulation can not
really be distinguished here from bound state plus radiation
or soliton plus radiation, it is distinct from both pure
radiation and simple soliton behavior. What we observe is
charateristic of an ongoing interaction of some kind which in
amplitude is evidenced by growing and decaying modulation.
The phase further supports that it is indeed an interaction
and not linear dispersion by its relative flatness (]ﬁ‘ = 0)

within the group with jumps connecting the regions that occur
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Fig. 3.49 Viscous NLS numerical evolution for a wave group of
23 waves, initial steepness ak = .16 (Exp 23). Spatial frame
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between locations of amplitude minima. The phase also seems

T J' "'.'t'."v"“’;‘-"ﬁ'_""iv RN
-

distinguishable from that of divergent solitons in that the

jumps change in time, generally corresponding to locations of

Tl " -

nodes, rather than staying fixed in relative position within

vy

the group.

ey

T T T vi- T

3.7 DISCUSSION AND SUMMARY

We have made comparisons between observations and
numerical solutions (from real data initial conditions) of

narrow-banded wave group evolution. From these comparisons,

e

using the long-time behavior of exact asymptotic model
solutions as & guide, we believe that we can distinguish
vetween radiation (linear dispersion) and soliton-like
behavior based on characteristics of the phase modulation.

This does not appear to have been examined before in

_,fv.ﬁﬂfvv
A N I

observations, primarily due to lack of a method for obtaining

a time series of phase modulation from measurements of surface

it

displacement. From amplitude modulation alone, it is
difficult to tell whether the wave group development is a ‘

F forced superposition of linear components which disperse or a {

e

truly nonlinear phenomenon. We suggest that, at least for
wave groups with a well defined carrier frequency, the phase

modulation may give a clearer indication of the type of wave

{ interaction that takes place.
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The only published study of the evolution of mechanically
generated groups that looks at phase is that of Feir (1967].
We briefly describe his results and compare them to our wave
group evolutions. He generated variable amplitude, constant
frequency pulses. The amplitude (wavemaker stroke) was varied
smoothly from zZero to some maximum amplitude back to zero.
Have development was observed at 2 fetches: 4 feet and 28
feet. (Our initial condition is specified from an observation
at 20 feet:' the final obsarvation is at 450 feet). Frequency
was determined from zZero crossings in amplitude. This yields

frequency averaged over one half wave period.

Qualitatively, our results are consistent with this
relatively short term observation. He shows the frequency
amodulation for 2 wave steepnesses, ak = .025 and ak = .08.
These correspond best to the first two cases discussed in
section 3.6 corresponding to radiation and soliton,
respectively. However, we really can not determine the
long-time behavior from Feir's observations. The initial
frequency within the group in all cases (his and ours) is
uniform, imposed at the wavemaksr. For the smaller steepness,
Feir £finds that -he frequency within the group is still
uniform at 28 feet. Linear dispersion is evident at the group
edges. Jumps in frequency occur at the edges corresponding to
locations of amplitude minima. In the case of the higher

steepness, the frequency at 28 feet has what Feir refers to as
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a 'kink' or ripple within the group. It is like the
undulations we see in cases of overall uniform phase. Again
linear dispersion is evident at the edges of the group with
jumps in frequency at amplitude nodes. The amplitude
modulation also indicates that the group is in an early stage
of evolution’ the group has spread but is still a coherent
pulse with amplitude varying smoothly from zero to a central

maximum back to zero.

Feir shows the amplitude modulation of some steeper
experiments which are similar to amplitude modulations that we
observe (growing modulation of a single envelope to two) but
does not show the frequency modulation. He remarks that the
frequency modulation varies erratically’ we would expect
phase jumps within the group to accompany the growing
amplitude modulation. He also remirks on a trend for the
frequency of leading groups to be lower than that of trailing
groups. The results of the frequency downshifting in chapter
2 al! > indicated that although the peak frequncy downshifts
with evolution, not &ll the groups are of lower frequency.
Rather, the modulation sorts jitself into a succession of

groups of increasing frequency.

We cannot resolve very clearly, from the phase
modulations of the observations, between a simple soliton

state and the bound state (both in a background of radiationl.
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The type of radiation present in the observations makes the
phase much noisier than that which we specified in analytic
initial conditions (section 3.4). In one case, that of the
steepest and longest initial pulse, the phase was more
suggestive of the bound state than that of simple soliton. In
all other cases (including some not discussed) where linear
dispersion did not dominate the long-time evolution, the phase
modulation seemed to indicate soliton plus radiation type
behavior. Perhaps due to dissipation one needs longer,
steeper initial profiles than predicted by inviscid theory to
achieave a bound state. The effect of dissipation is seen to
be significant, and in the parameter range investigated acts
to lower the ‘quantum’ or predicted number of solitons that

one would estimate from the initial condition.

Due to dissipation, it seems that the bound state or
soliton is not manifested by the recurrence or steadiness (in
the soliton case) of the initial condition but is manifested
by the coherence of the wave group. The phase modulation
indicates that the waves remain together and interact in the
long-time evolution in contrast to predictions of the linear
theory for thermalization of the group. The results of Yuen
and Lake [1975) support this interpretation. Although they
did not see recurrence of the initial condition, the observed
groups did not separate. It would seem that the primary

manifestation of the bound state is in this long-time
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coherence.

WHe find that the frictional NLS equation models the
long-time evolution extremely well. It is perhaps surprising
in view of the the weak nonlinearity of the theory and the
crudenesss of the dissipation term. R&lthough the form of the
dissipation does not directly affect the phase, we find there
is an indirect effect on the phase in the long-time evolution

by a change of the 'quantum'.

The model cannot predict a frequency downshift such as is
observed. Although the downshift is small and only occurs for
the steeper wave groups, it is an important, consistent and
nonconservative feature of the long-time evolution. It may be
due to some higher order effect or more complicated

dissipation than was considered.
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CHAPTER 4

OCEANIC OBSERVATIONS OF INTERNAL WAVE GROUP DEVELOPMENT

4.1 INTRODUCTION

A field study was undertaken in September 1979 to observe
the generation of high frequency internal wave packets in
Massachusetts Bay. The propagation of these waves has been
previously observed during late summer and early fall when
there is a strong seasonal stratification. (The bay is nearly
isothermal in winter). They are thought to form from the
interaction of the tide with Stellwagen Bank, a local
topographic feature (Fig. 4.1). The packet propagation was
first looked st by Halpern (1971al] and more recently by Haury,

Briscoe and Orr [1979]).

There have been relatively few oceanic studies of wave
generation from tidal interaction with topography. Some
notable exceptions relevant to Massac: usetts Bay are the

extensive field study by Farmer and Smith (1980al] in Knight

L - -
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Fig. 4.1 CD shows the steaming track for the acoustic
transect. and B is the location of the buoy from the present
field experiment. Sites of measurements made in previous
studies are also indicated. EF marks an XBT survey by HBO
(1979]1. T denotes the location of Halpern's (1971la,b]
observations. The solid triangles show the position of Orr's
acoustic observations of the packet [HBO, 1979]1. (Map after
HBO, 1979).
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Inlet. the observations by Osborne and Burch (19680! in the
Andaman Sea and the study done by Gargett [{1976) in the Strait
of Georgia. These studies show the asymmetry of the
topography and the structure of the statification to be
crucial to the types of response that are observed. Although
there are numerous theoretical and laboratory studies on this
topic, they generally employ a simple stratification and &n
idealized ( smooth and symmetric ) topography. Hence the use
of these studies to interpret a given oceanic situation is
uncertain unless applied in conjunction with actual
observations. 1In particular two theoretical and labo:atory
studies, the work of Lee and Beardsley [1974]) and that of
Maxworthy (1979, offered two different generation mechanisms
to explain Halpern's wave packet observations. These together
with the above field studies were the primary motivation for
the present experiment. A brief review of some of the

Previous work will be included in the discussion.

The goal of the present experiment was to observe the
tide-sill interaction over time to determine how the internal
waves form. Haury, Briscoe and Orr (hereafter referred to as
HBO), from their observations, saw some evidence in support of
the lee wave generation mechanism proposed by Farmer and Smith
and by Maxworthy for creation of the high frequency packets.
Farmer and Smith disagree with Maxworthy on the details of the

packet formation. Farmer and Smith see the packet formed as a
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nonlinear lee wavetrain (quasi-steady!). Maxworthy sees the
wavetrain formed from the disintegration of the front of a
single depression or massive lee wave (unsteady!). HBO did not
distinguish between the two explanations ( the Farmer and
Smith paper was still in preparation at the time). However,
HBO's conclusion was of a qualitative nature based on only a
few observations of the apparent generation. They did not

observe the time development.

In the present study, a ten kilometer track perpendicular
to the bank axis and centered over the crest was monitored for
one tidal cycle. A commercially available Raytheon fathometer
wvas used as & remote sensor of isopycnal motion. Seven
kilometers is both the full obstacle width and the length of
the local tidal excursion (Halpern, 1971bl. Figure 4.1 shows
the location of the steaming track (CD! and the mooring site
(B) of the present study as well as the position of an XBT
survey by HBO (EF) and the site of Halpern's Station T. To
accompany the interpretation of the acoustic record, a time
series of Froude numbers was calculated from velocity and CTD

measurements made on the crest of the bank.

The most striking aspect of our observations is the
asymmetry of the response. It is perhaps not surprising,
especially in view of previous studies, since the shape of the

bank shows marked asymmetry and represents a large obstacle to
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the flow. On ebb tide (flow directed toward the Gulf of
Maine), a large isopycnal depression or massive lee wave is
formed behind the sill (over the eastern slope). The flow
sees a dramatic decrease in depth from 80 meters in the Bay to
30 meters on the crest over a distance of one half to one
kilometer. The horizontal scale of the depression is 5
kilometers, the same order as that of the more gently sloping
eastern side of the sill. This depression remains stationary
as the tide slackens. The observed Froude number (Fr) on the
sill crest is almost always supercritical (Fr > 1),
Supercritical flow over the crest is also indicated by the
lifting of the isotherms over the bank, in analogy with
layered hydraulic flows (Fig. 4.2B). The Froude number
estimated away from the crest using continuity is always
subcritical (Fr < 1). There is a short period of
subcriticality on the crest when the tide turns. It is during
this period of subcriticality that the large depression formed
in the lee of the bank is hypothesized to give rise to a train
of large amplitude high frequency internal waves. They
propagate westward. The speed of these waves is estimated
from an internal KAV dispersion relation (Benjamin, 1966].

The estimate gives consistent results with an extrapoliated
packet arrival time at point C (Fig. 4.1). Support for the
above interpretation of the flow response on ebb tide comes
from acoustic images, Froude numbers. an XBT survey, and an

observation of the packet at point C.
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The behavior on the flood phase of the tide (flow
directed into the Bay) is quite different. The flood tide
sets up a much smaller scale lee wave very quickly. Its
length is about one kilometer, the same as that of the depth
transition on the leeward side of the sill. To the flood
tide, the depth transition over the sill should appear much
more gradual. As the tide slackens and turns, a train of 4-5
lee waves of the same scale as the first stationary wave
appear to form and advance into the decreasing flow. There is
less observational support for the interpretation of the flow
response on flood tide than there was on ebb. Evidence here
comes just from the acoustic images and the Froude numbers.
Although it has been conjectured that the packets might not be
formed on both phases of the tide due to the asymmetry, no
previous attempt has ever succeeded in observing them
propagating into the Gulf of Maine, and we did not try to
observe them further east in this study. It would seem that
waves are generated on flood tide, and that they look quite

different from those generated on ebb.

A detailed description of the measurements is given in
the next section. This is followed by an analysis of the data
and a discussion of the results. Some pertinent previous work

is also reviewed in the discussion.
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4.2 MEASUREMENTS

The velocity on the crest of the bank was measured using
three Endeco Type 105 ducted impellor current meters. These
current meters are specifically designed for shallow water
applications. They were attached to the mooring cable by a
1.5 meter tether and were thus allowed to orient freely to the
flow. They recorded speed and direction at thirty minute
intervals for a period of forty six hours throughout the
experiment. A slack mooring was used with a 2.5:1 scope. The
water depth on the crest was 28 meters, and the current meters

were set at depths of 6, 13 and 19.5 meters.

Density was calculated from measurements made on the
crest of the bank in the vicinity of the mooring with a
Hydrolab hand lowered CTD. Salinity measurements show the Bay
is nearly isohaline, and the stratification is primarily due
to seasonal heating. Temperature was also measured using
XBTs. A dense XBT section was made over the bank as the tide

turned from ebb to flood (Fiqg. 4.2B).

An acoustic time series was mads using a 41 kHz wide beam
transducer Raytheon fathometaear. The acoustic record was made
while steaming a 10 kilometer track perpendicular to the bank
axis. This track was steamed continuously for a tidal cycle:

navigation was by Loran-C. We attempted to duplicate the
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track on each successive pass with the largest deviation
between the tracks being of order 600 m. The use of a
fathometer as a remote sensing tool to observe internal wave
motion is not new. Among others it has been used by Farmer
and Smith (1980a.b) in Knight Inlet and by HBO (1979] in
Massachusetts Bay. The source of acoustic reflection is
uncertain, although in our range it is probably from
biological scatterers which act as passive tracers of the
fluid motion (Orr, 1980). We can show from contouring
temperature measurements taken from a densely spaced XBT
section on the same scale as the acoustic record that the
acoustic scattering layer is coherent with the thermocline
(Figs. 4.2A and 4.2B). Although the images produced with the
Raytheon are not as clear as those of Farmer and Smith due to
a more diffuse scattering layer, they do show the large scale
isopycnal motion. In addition, they form a continuous time
series that we can use in interpreting our physical
measuremants. In all of the Raytheon record made while
steaming, the chart paper speed limits our horizontal

resolution to 200 meters.

In Figure 4.2 the distance scale is not uniform due t:
slight irregularity in steaming. The contouring was do-e '
correspond exactly to the acoustic record  However thra

temperature contoured on a uniform distance scsie | -

basically the same (the irregularity ts sl.gt" o
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12.0

Oepth (m)

Totol dstonce opprox. 10 Km

Fig. 4.2A Raytheon acoustic image made while steaming at
approximately 9 knots eastward across the bank as the ebb tide
slackened. The flow is from left to right and is close to
zero. The image shows a large scale near-surface
low-scattering region coherent with the depression of the

thermocline seen in 2B.
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Station number (Raytheon)

18.0

Depth (m)

300

33.0 Totol dist ox. 10 K
stonce Opprox. m
azei9eN O oisionce opp 42°22.95N

70°22.47W 70°17.35w

Fig. 4.28 Temperatures from expanded scale XBT traces hand
read and contoured on the same scale as the acoustic image of
2A. The numbers at the top of the figures indicate stations
where XBT casts were made.
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corresponds to the appearance of a large depression or massive
les wave formed on ebb tide over the eastern side of
Stellwagen. Its horizontal scale is five kilometers. 1In the
acoustics the isotherm depression appears as a clear
lov-scattering region, probably from surface mixed-layer water
moving down. The time developmen: Sf the lee wave can be
traced in the acoustic record by examining the evolution of
this low-scattering region. In this manner. the acoustic

record provided us with a continuous real-time picture of the

flow,

4.3 ANALYSIS AND RESULTS

An extensive field study of topographic generation of

internal waves by a tidal flow has been carried out by Farmer

and Smith (1980s,b! in Knight Inlet, British Columbia. The

local topography and stratification are considerably different

L Lo a3 ot ot ot Bt o

from that of Massachusetts Bay. The topography is aiso large

amplitude, but the mean depth of the water is much greater

e 4

(500 m in K.I. opposed to 80 m in M.B.) The stratification is

more nearly two layer (fjord-type fresh layer over salt).

Ta" v

Farmer and Smith classified their flow response based on an

internal Froude number which they defined as the ratio of the

maximum tidal velocity to modal internal wave phase speeds

where the modal speeds were calculated from the observed

density profiles. This definition is equivalent to

:
n
k
v
]
v
’
{
:
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Maxworthy's except that Haxﬁorthy used directly measured phase
speeds instead of calculated modes. Farmer and Smith's Froude
number differs from the usual definition (which uses density
structure over total depth) in that only density structure to
sill depth was used. The reason fof their definition was the
feeling that the sill was controlling the flow, and hence only
stratification down to sill depth would be important in
determining the response. Both the field study of Farmer and
Smith and the laboratory study of Maxworthy categorized their

results based on a Froude number dependence.

In the present study, a time series of Froude numbers was
calculated to accompany the scoustic time series. There is an
acoustic image on the crest of the bank every half hour as
well as a current measurement. The Froude number calculation

is the same as that stated above:

U is the mean value of the flow component perpendicular
to the bank axis averaged over the three depths. The axis of
the bank is 368 degrees west of north. The flow was resolved
into components along and perpendicular to the bank axis. The
observed velocity was fairly depth independent. The phase
speeds were computed from CTD observations of density on the
sill crest using a fourth order Runge-Kutta shooting method.

The phase speeds for the first three modes were found to be 23
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3

i| . cm/sec, 10.4 cm/sec and 7.1 cm/sec, respectively. Figure 4.3

.5 is a plot of the Brunt—V;ioala frequency and the first three

AS . vertical eigenmodes.

‘é Table 4.1 lists the calculated Froude numbers. An

; asterisk is used to denote all values greater than 1

;\ (supercritical). The Froude numbers for the second and third

i? modes were almost always supercritical, while the Froude

’% number for the lowest mode was supercritical at times of

i maximum ebb tide. Maximum flood tide occurred from 2000 to

ﬂ% 2130 hours in Table 4.1 and the first mode Froude numbers were

'3 . just subcritical.

é HBO estimate a Froude number from their measurements and

‘g from those of Halpern (1971la] taken at a site 9 km west of the

J crest (Station T, Fig. 4.1). They find Fr =t:—)§ = 0.33. By

; | mass conservation, this is consistent with our measurements on

é the crest. Again using conservation of mass, we extrapolate

; to S5 km east of the crest and estimate a value of the Froude

'g number equal to 0.57. These results indicate subcritical flow

ié on either side of the bank.

% He now use the time series of Froude numbers to interpret

? the acoustic images. Any Froude number reference is to the
first mode value unless otherwise stated. The evolution was

if noted by following the development of the near-surface

D B I e T T T o D S T T D
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Table 4.1 Time series of Froude numbers

MODE 2 FROUDE NO. MQOJE 3 FROUDE NO.

MODE 1 FROUDE NO.

TIME(1/2 HR)

PO B R A B B BE A R LR IR K BE B SR AN J EE SR EE e s Ex

8]1%9%\125392842571\34 DWOWNME RO WO DWW MWD
OO NOVANNNO— N~ N~ SOOOVOMNNMINODNNN~
o \d - .

................................. .

MR A LR 2K B SR BN J PRI B IR IR B BE IR BB B )

[ 36]234837‘2305 o~ - 8035311'29‘2'2‘.03
n%948|805272,32] 92“763‘4183599‘1222‘“

........................

........ 33110\22111000000\122223&222\0

s s H R EEE PR B I I B B A

O@MONOMMINO OO QRO OOVANONONY T VININN - Oh =t O
am %699885‘3212158“13354 oM~

140 I~ OO0 P~ 00 O =F W0 F O
........................ Tneenaam RN
01111111110000000000000000011111111000
0003000000WOOOOOOOOOOOOOOOOOOOOOOO o0
83808333803 3858288838R835 308323 8828ss
—— ——

1\1N\11111\1112%2222222000?&00““%% 858

o

™~
» >
~ a0
S~ S~
~ o
S
o

v °

RO 2SI el P T TRIAL odl STAVRSSARA S AR+ i 2 L 2 R Ta Ta b e oo Hog o

v
¥

R
0
CIFA)

. - .

At

SR
e

- o, e,
4

Tt
A

M AT

r



COiBar Rt <) la i “Phiy Jris "0t ENCt G i gyl b 0 SR Mtien Walhe  Befie- it Tt Jumn ghn |

low-scattering region in the acoustic record. As stated
earlier, Figure 4.2B shows that this feature is associated
with a large scale isothermal depression. For purposes of .
this discussion, we will refer to the depression as a lee

ot wave.

Fighro 4.4 is a schematic of the development of two
related features in the acoustic record. The first is the

? clear near-surface feature that we identify with a lee wave.

This clear region is outlined from the acoustic record, and
its development with time in relation to the sill crest and a
second feature is followed. The second feature is also a
clear area in the acoustic record which occurs on the bottom.
It is conjectured td be well mixed water of a different type
than the ambient bottom water and thus has different
scattering properties. Its movement seems definitely related
to the tidal cycle and lee wave formation. It may indicate a
pattern in flow separetion similar to that observed in Knight

Inlet. In each sequence of the schematic, the bank appears

E@ slightly differently bscause it was drawn to correspond to a

;‘f: particular acoustic image. As mentioned previously, the

N steaming track and speed of the ship were slightly irregular. .
t The form of presentation was chosen to mirror the information

ﬁ; in the actual image. .
E Figure 4.5 relates the schematic of Figure 4.4 to the
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Fig. 4.4A-4D Schematic of the movement of two clear
(low-scattering) regions in the acoustic images. The
near-surface region is identified in the text as a lee wave.
The bottom clear region may be associated with a pattern of
flov separation. 4A-4D show the set-up and ‘stationarity of the
ebb tide lee wave. The patch of clear bottom water is seen to
move from the sill crest to the east of the bank.
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Fig. 4.4E-4H 4E-4F show the lee wave shortening and
steepening’' the bottom water begins to move back up the bank
4G-4H show the set-up of 1-2 lee waves by the flood tide and
the propagation of 4-35 of thcse lee waves as the tide turns.
The bottom water har wmoved P :k up and over the sill crest.
The arrows indicate °~ di .«tion of the £low. The time in
hours and the mean f1-. are marked in each schematic. These

values correspond to the Froude number time series listed in
Table 1.




Froude number calculations from Table 4.1. It shows the
magnitude of the mean velocity component across the bank and
the magnitude of the first mode internal wave phase speed.
Where the current speed exceeds the phase speed, the Froude
number is supercritical. The times corresponding to elements
of the schematic of Figure 4.4 have been marked to indicate
where each element occurs in the tidal cycle and to indicate

the criticality at these times.

He observed that the lee wave on the eastern side of
Stellvagen was already present when the acoustic transect
began (Figs. 4.4A and 4.6]. It seemed to be a single large
depression. This i{s consistent with Maxworthy'’'s large
depression and with Farmer and Smith's single massive lee wave
or jump. If shorter lee waves were present, they could have
been resolved (although not shorter than 200 m) as will be
seen on the flood tide response. In the Froude number
sequence (Table 4.1, Fig. 4.5) this corresponded to the 6
hour time interval 1300 to 1900 hours when the mode 1 Froude
number on the crest of the bank was almost always
supercritical (Figs. 4.4A to 4.4D). As the tide slackened,
the Froude numbers became subcritical (flow speed less than
mode 1 phase speed!). The lee wave remained stationary but
became shorter and shallower., and finally it was no longer
discernable (Figs. 4.4E,4.4F,4.7). This occurred rather

quickly, from 1900 to 2030 hours. The time period corresponds

N T A P N T T
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Fig. 4.6 Raytheon acoustic image corresponding to Figure 4.4A.
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Fig. 4.7 Raytheon acoustic image corresponding to Figure 4.4E.
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Flg. 4.9 Raytheon acoustic image corresponding to Figure 4._4H.
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to subcritical flow over the crest before the tide starts to

approach maximum flood.

The lee wave was not seen to propagate upstream (i.e.,
the low-scattering region was not seen to move upstream over
the western side of the bank). We hypothesize that the lee
wave disintegrates into a train of solitary waves over the
crest of the bank as observed in the laboratory experiments of
Maxworthy (1979]). This hypothesis is based on the following

observations and wave speed calculations.

Tho‘tirst question to answer is whether the depression
could propagate quickly enough that it was missed in the
acoustic transect. To make a speed estimate, we use the
distance the feature must propagate to be beyond the steaming
track ( from points B to C, Fig. 4.1) and the maximum amount
of time that the feature could have to propagate without being
observed ( assumes the ship is steaming east at the time the
depression starts moving westwvard). We find that to be missed
the feature must move westward at a speed of -139 cm/sec.

This speed estimate does not take into account the advective
speed of the flow which ranged from O cm/sec at 1900 hours to
~22 ¢m/sec (westward) at 2030 hours. The advective speed is
taken from the mean velocity over the crest and thus
represents an upper bound on the flow in the Bay. The time

interval 1900-2030 hours is examined since this was when the
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feature disappeared over the eastern side of the bank. .

We can compare this speed with two estimates of phase
speed. The estimates were calculated using the relation given
by Benjamin (1966] for finite amplitude internal waves in a
2-layer fluid.‘ The layer depths, wave amplitude and density
difference were taken from measurements made in the deeper
water of the Bay immediately west of the sill crest. The
speed of an infinitesmal long wave, the fastest linear wave,
is calculated to be 45 cm/sec. The nonlinear-dispersive (KaV)
phase speed is 58 cm/sec. Despite the large possibility for
error in the estimates and including the advective speed of
the flow, it seems unlikely that the propagation of the

massive lee wave would have gone undetected. .

WNe can check the consistency of the KAV speed with
another estimate of the packet speed based on an observation
of the high frequency wave group at point C (Fig. 4.1).

First we briefly describe the observation. The waves were
observed at point C using a thermistor suspended from the side
of a freely drifting ship. The onset of the wave packet was
marked by an abrupt rise in temperature recorded by the
thermistor coincident with a downward plunge of the scattering
layer in the acoustic record (Fig. 4.10) and the advance of a
pattern of surface slicks oriented parallel to the bank axis.

The period of the waves was approximately 10 minutes. The




Depth (m)

== 100

- 1o > ——s.
. : -"

Fig. 4.10 Raytheon acoustic image of high frequency internal

wave packet observed while ship was freely drifting 5 km west
of Stellwagen at point C.
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motivation for this observation was twofold. Frior
observations of the propagation of the high frequency packet
by both Halpern (1971a) and HBO (1979] were made in the
vicinity of Station T (Fig. 4.1). HWe wanted to confirm that
waves did indeed propagate westward from our steaming track
(CD., Fig. 4.1} which was north of Station T. Secondly, this
observation fixed a time and position of the packet which we
will now use in determining the timing of the wave generation.
It should be mentioned that the continuous acoustic transect
over a complete tidal cycle was scheduled to begin immediately
after this packet observation but was delayed due to passage
of a storm. The storm mixed the surface layer: prior to this
the seasconal stratification had extended to the surface (Fig.
4.3)., The observed waves appear to be mode one (seasonal
thermocline moves up and down in phase! and hence should not

be very affected by this surface mixed layer.

From the observed packet arrival we can project
subsequent arrivals since the waves are tidally generated. We
estimate a packet speed taken as the ratio of distance to time
defined as follows. The distance is from the sill crest to
point C. The time interval is from when the Froude number
first became subcritical on the crest until the projected
packet arrival at C. With error bars of (+/-) a half hour we
£ind lower and upper estimates of the packet speed to be 44

and 62 cm/sec, respectively. This estimate disregards the

|
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. mean flow advection. He note that if the packet starts to
propagate much earlier than estimated, the mean flow is large
and against the waves (mean flow is of order 40 cm/sec east).
If the packet starts to propagate later than estimated, the i
mean flow is directed westward and will advect the packet.
Hence, the phase speed probably falls within the calculated .
bounds. These bounds are consistent with both the linear long

wave and KAV phase speed estimates.

From the above observations and estimates, we conclude
that the large scale depression did not propagate westward as
a massive lee wave. Rather, at the time it disappears from

our acoustic record, it disintegrates into a train of large

P PR T T VR TR A R

amplitude high frequency internal waves which we can no longer

Bl

resolve in our record, but whose speed we can estimate from
both theory and observations. These estimates show that the

observed packet speed is consistent with KaV theory. Some

P POV TN, T

additional support for this immediate breakup of the front of

i

the massive lee wave into large amplitude high frequency waves
comes from two acoustic observations taken hy Orr (personal

communication). The positions of the observations are shown

b nbead ol

in Figure 4.1 and are located on the crest of the bank. They
wvere made by & 200 kHz acoustic backscatterer with much higher
resolution than the Raytheon. Orr observed the packet at

these locations which correspond to our proposed site of wave

B ML s ATA A AR e

packet gdnorntton (on the crest). However, whether the timing




of his observations is consistent with the tide has not been

verified.

Finally, we note that it is impossible to identify
uniquely the festure that remained stationary behind the sill.
Perhaps a succession of lee waves, each with a correspondingly
slower velocity, was generated in the lee of the bank as the
flow speed decreased. The front of each of these lee waves
may have disintegrated into a train of finite amplitude high

frequency waves.

Between 2100 and 2130 hours vwe saw the rapid setup of 1-2
lee waves on the western side of Stellwagen formed by the
flood tide (Figs. 4.4G,4.8). They were about one fifth the
scale (half to one kilometer) of the ebb tide lee wave. There
vas no XBT section to compare temperature with this feature.
By 2200 hours a train of 4-% lee waves appeared to be
propagating over the crest into the decreasing flow (Figs.
4.4H,4.9). This is consistent with the Froude number series
which shows the flow over the crest to be subcritical. It was
quite different from the ebb tide lee wave in both scale and
duration. The flood tide lee waves appeared over the western
side of the bank for less than 2 hours as opposed to 6 hours

on ebb.

The second feature that was followed in the acoustics is

.....................................................
.......................
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the clear region on the bottom. As the tide approached

maximum ebb, this feature was seen to move off the crest of
the bank to the east (Figs. 4.4A.4.4B). It continued to move
eastward even as the tide slackened (Figs. 4.4C.4.4D). As
the ebb tide lee wave became shorter and shallower, the fluid
moved back over the crest (Figs. 4.4E,4.4F). Eventually, it
seemed to cascade over the sill (Figs. 4.4G,4.4H). This may
indicate that the flow is not blocked. Additional remarks
regarding the relation of this feature to the flow separation

observed by Farmer and Smith will be made in the discussion.

4.4 DISCUSSION

Halpern's field observations of the waves which propagate
into the Bay motivated two theoretical/experimental studies
aimed at describing the generation of these finite amplitude
waves from an initial disturbance. The first of these, by Lee
and Beardsley (1974), associsted the generation with the flood
phase of the tide (flow directed from the Gulf of Maine into
Massachusetts Bay). The generation is described in three
phases. First, it is postulated that a warm front forms from
a partial blocking of the incoming stratified flow over the
bank. Second, this large amplitude propagating front steepens
nonlinearly. Thirdly. the front disintegrates into a train of

solitary waves which result from the interplay between the

..............
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nonlinearity and the dispersion of the steepening front. Lee
and Beardsley modelled the evolution of such a solitary
wavetrain from a front-like initial disturbance numerically
using an internal Korteweg-deVries equation. The solutions
were compared with laboratory experiments for the second and
third phase of the proposed generation mechanism. Comparison
with Halpern‘s field data was also done for the end of the
third phase. These comparisons seemed to give reasonable

agreement with the observations.

Halpern's field observations and the explanation given by
Lee and Beardsley motivated a second study by Maxworthy
(19791. Maxworthy proposed that the waves were actuslly
formed from a disturbance created on the ebb phase of the tide
(the opposite phase from Lee and Beardsley's explanation). He
suggested the following sequence for the generation. The ebb
tide produces a supercritical flow over the bank which creates
a downstream depression or lee wave behind the submarine sill.
As the tidal flow slackens and turns, the depression advances
over the crest. The front of the depression disintegrates

into a train of solitary waves that propagate upstream into

. the decreasing flow and evolve according to KaV-type dynamics.

This physical situstion was simulated in a laboratory model by
towing an obstacle through a stratified fluid over one half of
a tidal cycle. The periocd of oscills“ion was varied. The

amplitude of the tidal cycle and the ambient stratification
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were kept fixed. The flow was characterized in terms of an
internal Froude number: two regimes were found. The first
regime is for Froude numbers exceeding Frm (m denotes mixing!).
For this case the amplitude of the quasi-stationary
disturbance in the lee of the obstacle bocémes so large that
it breaks and mixing occurs. As the tide slackens and turns,
waves propagate in both directions. Wave generation {s
hypothesized from two different mechanisms. Some are
generated from the nonlinear evolution of the front. They
advance upstream into the decreasing flow and evolve as
solitary waves. Others are generated from the collapse of the
mixed region. They propagate in both directions and are much
weaker. For lower values of the Froude number, no mixing
takes place. Only the solitary wavetrain is seen to evolve in
the direction of decreasing flow. As the Froude number
decreases a critical value, Frc, is reached below which no
waves are formed. By fitting observations to a sech®*2
initial condition, the number of solitary waves are estimated
for both the experiments and Halpern's field observations.
Reasonable agreement is obtained for the experiments.
Although Maxworthy also claims reasonable agreement with the
field observations, the number he gives seems at least twice
the observed number of waves. He gets 60 as his estimate.
Both by counting Halpern's waves and by estimating the number
of 6-8 min period oscillations that can occur in the 2.5 hour

span over which the waves are seen yields about 30 as an upper
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estimate. However, the main area of contention between .
Maxworthy's explanation and that of Lee and Beardsley lies in
the phase of the tide that generates the disturbance. They
are in agreement on the evolution of the front into a series
of solitary waves according to nonlinear-dispersive theory.
Due to the different phase of the tide, the position of

generation also differs. Lee and Beardsley's hypothesized

evolution occurs inside the Bay west of the bank. Maxworthy's
%f " waves are observed in the experiments to form directly over
Hi the crest of the obstacle as the front of the disturbance

starts to come across.

From our experiment in Massachusetts Bay the waves which
propagate into the Bay appear to evolve according to .

- Maxworthy's hypothesis. They seem to be generated by the

steepening of the front of a large depression formed on ebb
tide. The front appears to disintegrate directly over the
crest of the bank. The nonlinearity of the waves and the
congistency of the phase speed estimates together with the
steepening and shortening of the stationary front point
towards an evolution governed by nonlinear-dispersive theory.
However, based on Maxworthy, this theory seems to overpredict
the number of waves. Also, the waves seem more weakly
dispersive than might be expected. This is pointed out by
Farmer and Smith for Maxworthy's results: they calculate that

the amplitude dispersion of the solitary waves should cause
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them to separate more rapidly than is observed. This wesk
dispersion seems to be present in Massachusetts Bay also.

With the possible exception of the leading waves, the
wvavelength within the group remains fairly uniform. From
three different sets of observations, each made in different
years and at different locations, we find a wavelength of 200
meters. Halpern observed a wavelength of 200 m at Station T,
9 km west of Stellwagen (Fig. 4.1). In their KdV model, Lee
and Beardsley estimated the location of the initial front
based on the wavelength and amplitude observed at Station T.
They estimated the front location to be S km west of
Stellwagen, which is the site of our observation of the
packet. The wavelength there was already of order 200 meters.
Lee and Beardsley made further field measurements and observed
the packet at a point l1ll km west of the bank and found a
vavelength of 200 m. Of course, each of these observations

was made in different years.

There are also several similarities between the ebb tide
response and the quasi-steady lee wave theory of Farmer and
Smith. They see two different types of response to tidal flow
over the sill in Knight Inlet. The first type is most like
the ebb response in Massachusetts Bay and is characterized by
a single large isopycnal depression behind the sill. They use
the term hydraulic jump to describe this response’ {t could

also be & large breaking lee wave. It forms when the Froude

........
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number is critical or just supercritical with respect to the
lowest mode and supercritical with respect to all higher
modes. The length scale of their jump is the same as the
length of the sill. We see the same type of length scale and
Froude number dependence in Massachusetts Bay. When the tide
slackens and turns, they see this jump collapse to form an
undular bore which propagates upstream into the decreasing
flow. Farmer and Smith disagree with Maxworthy's appeal to
nonlinear-dispersive theory to account for the generation of
the wavetrain. They see linear lee wave theory as accounting
for most of the observed features of both their observations
and his experiments. However, our observations seem to
support the evolution of a solitary wavetrain from the

observed steepening of the apparently stationary front.

The floocd tide response in Massachusetts Bay is best
described by Farmer and Smith's second type of response. This
second type is the formation of a lee wavetrain behind the
sill. This response is obtained for Froude numbers
subcritical with respect to the lowest mode but superéritical
with respect to higher modes. The length scale of the waves
is much smaller, on the order of the sloping portion of the
topography. We see the same Froude number dependence. Our
observed length scale is also smaller due to the bank's
asymmetry. Flow separation plays an important role in this

second type of response.

----------
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In Knight Inlet, the generation of lee waves appears
delayed by flow separation on the downstream face of the sill
(perhaps by smoothing the obstacle shape as the flow sees it).
When the lee wave reaches some critical length, flow
separation is suppressed by the modification of the pressure
field on the downstream face of the sill by the accelerating
flow. Then a train of lee waves is able to form behind the
sill, controlling the boundary layer separation as the flow
speed drops. In Massachusetts Bay, the behavior of the second
clear feature in the acoustic record, the patch of
low~scattering bottom water, may indicate a similar pattern.
In brief, slthough our acoustic images are not clear enough to
detect the flow separation boundary, the bottom water we
’ . observe is probably behind the separation, and its movement
indicates a possible flow pattern. If this is indeed the
case, then a possible explanation for the low-scattering
properties of this patch of bottom water may be from the
turbulent mixing that takes place behind the separation point
from shear flow instabilities. In Figure 4.4A the patch of
vater was observed on top of the sill crest, indicating flow
separation also occuring close to the crest. The lee wave vas
already present. It may be the formation of the lee wave and
its continued presence that modifies the pressure field and
suppresses flow separation. By suppression we mean that flow
separation moves downstream of the crest, as shown by the

movement of bottom water to the east (Figs. 4.4B-4.4D). As
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the flow speed drops and the front shortens and steepens, the
bottom water advances up the sill, indicating possibly that
flow separation occurs near the crest again (Figs.

4.4E-4.4H).

4.5 SUMMARY

This study in Massachusetts Bay shows the importance of
in-situ observations in determining the flow response in a
complex physical situation. The large amplitude and asymmetry
of the topography are seen to be crucial elements to the
behavior that was observed. There are few theoretical or
laboratory studies which examine these effects. The response
on ebb tide is consistent with the laboratory experiments of
Maxworthy (1979) and shows the formation of a single massive
depression in the thermocline downstream of the sill. As the
tide slackens and turns, the front of this depression
disintogratos and gives rise to a train of solitary waves.

The formation of a single depression when the Froude number is
supercritical with respect to all internal modes agrees with
the observations by Farmer and Smith in Knight Inlet (1980a]).
The evolution of a wavetrain according to nonlinear-dispersive
theory disagrees with Farmer and Smith's model for the
propagation of a lee wavetrain. However, a lee wavetrain best
describes the f£lood response. On this phase of the tide, a

lee wavetrain forms downstream of the sill and propagates
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upstream into the decreasing flow when the tide turns. The
Froude number during maximum flood is just subcritical with ‘
respect to the lowest internal wave mode and supercritical
with respect to all higher modes. Besides the difference in
Froude numbers, the response length scale and duration also :
differ markedly between the two phases of the tide due to the :
asymmetry of the bank. The time and length scales on ebb tide
are longer than those on flood: the length scales on the
respective phases of the tide are on the order of the

topographic slope. -

As in previous studies, we have tried to classify the .
behavior with a Froude number dependence. In a continuously
stratified fluid, wvhere a finite amplitude disturbance is
generated by flow over a large amplitude obstacle ( with the

possibility of upstream influence or partial blocking!), it is

unclear what the appropriate parameter for describing the flow
should be. To our knowledge, the study by Farmer and Smith

vas the first to attempt such a classification of oceanic sill

flows. Our Froude number results for the ebb and flood tide

fall into the two main types of response categorized by them

and seem to give good agreement with their observed behavior,
" despite the considerable difference in topography and

stratification. Additional oceanic observations in differing
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situations are needed to obtain a more complete

classification.
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CHAPTER S

CONCLUSIONS

In this thesis we have applied some of the wealth of
existing theory of nonlinear waves to observations of surface

and internal wave group development.

5.1 SURFACE WAVES

The surface wave observations show the long-time
development of surface gravity wave packets in a laboratory
wave channel. The groups exsmined are constant amplitude,
single frequency wave groups for a variety of initial wave
steepnesses and group lengths. The evolution of amplitude,
phase and freguency modulations with distance is described.

The modulations were obtained using the Hilbert transform.

The most important effects that we observed were the
cumulative effect of dissipation and, for groups of sufficient

steepness, the downshifting of the carrier frequency. At the
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final observation, the wave packet's energy was typically 25
per cent of its initial value. Damping coefficients estimated
from the observations were in reasonable agreement with
theoretical estimates. The downshifting in wave groups is
different from that previously observed in continuous
wavetrains. Although the peak frequency downshifts, as
estimsted from maximum entropy spectral estimates, not all the
groups have the downshifted frequency. Rather, the modulation
sorts into a succession of groups. The leading groups are of
larger amplitude and lower frequency than the trailing groups

which are of the initial carrier frequency.

There is almost no variation in the initial phase or
frequency modulation within the group, as imposed at the
wvavemaker. Small variastions are seen to develop with
propagation distance as well as small regions of quite large
variation. These regions of large variation correspond to
local reversals in phase or jumps located at local amplitude
minima. At times of minimum modulation, the phase is fairly
uniform. When the modulation is is growing or decaying, with
amplitude minima or nodes located within the group, we see
jumps in phase at node positions. MNMelville (i9811 has
suggested these jumps may be the mechanism of crest pairing
observed by Ramamonjiarisos and Mollo-Christensen (19791].
Crest pairing may be the visual manifestation of the frequency

downshifting.
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The amplitude and phase modulations at the most upstream
value of fetch were specified as an initial condition to the
cubic nonlinear Schrodinger equation. which was then allowed
to evolve numerically. A dissipative form of the NLS equation
was also solved numerically, with damping coefficients
estimated from the observations. By analyzing the evolution
of exact asymptotic solutions it was seen that the phase
modulations could be used to characterize the type of
behavior: linear dispersion, soliton, bound state, etc. We
used the exact solutions as a guide in interpreting and

comparing the long-time observations with the numerical model

evolutions.

e It appears that dissipation rules out the possibility of
recurrence. The bound state was not observed in the sense of

recurrence of the initial condition, but the wave groups did

exhibit long-time coherence. This could be best be seen in

the phase evolution. Dissipation typically becomes important

s a8 W

over half the evolution distance. The frictional NLS equation

i

modelled the long-time evolution extremely well. Although the

y .

form of the dissipation ters had a direct effect only on the

Ty Y

amplitude modulation, there was an indirect effect on the

phase.

- Some problems for further study are suggested by these

results. Careful experiments to examine the dissipation of
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surface waves are needed. 1In particular, an investigation of
the effect that a higher order dissipation might have on wave
phase, dispersion and frequency downshifting is suggested as a
consequence of our results. Another question we pose is that
of the mechanism of the frequency downshifting. Finally, an
application of nonlinear wave theory. in light of experimental
investigations, to ocean waves is needed. Demodulated surface
swell (using the Hilbert transform) from the CODE experiment
exhibits the characteristics of weakly nonlinear waves (Bill
Grant, personal communication]. These are the only ocean data
that we are avare of to be analyzed in this manner, and the

results look quite promising.

- $.2 INTERNAL WAVES

b The internal wave study looked at the generation of
packets of large amplitude internal waves resulting from tidal
interaction with a submarine sill. The flow response was
classified with a Froude number dependence as in the study by

Farmer and Smith (1980a.b]. The Froude number results for the

L e

ebb and flood tide fall into two different categories. The

ebb response shows the formation of a single large depression

PR |

in the thermocline downstream of the sill. As the tide

slackens and turns, the front of this depression disintegrates

and gives rise to a train of solitary waves. On the flood

tide, a lee wavetrain forms downstream of the sill and
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. propagates upstream when the tide turns. The response length
scale and duration differ markedly between the two phases of
the tide, due to asymmetry of the bank. This study focused
primarily on the generation. The propagation of the packet
formed on ebb tide has been well documented in previous
studies (Halpern 1971la.b, Haury, Briscoe and Orr 1979). The

wavetrain formed on flood tide should develop differently, and

its propagation has not been observed. Observation of these
waves is suggested as further work. Also, additional Froude

L number classifications of oceanic sill flows in different

situations are needed to obtain a more complete classification
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